{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,2]],"date-time":"2024-07-02T18:08:20Z","timestamp":1719943700594},"reference-count":47,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,5,1]],"date-time":"2020-05-01T00:00:00Z","timestamp":1588291200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2021,3,13]],"date-time":"2021-03-13T00:00:00Z","timestamp":1615593600000},"content-version":"am","delay-in-days":316,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Digital Signal Processing"],"published-print":{"date-parts":[[2020,5]]},"DOI":"10.1016\/j.dsp.2020.102701","type":"journal-article","created":{"date-parts":[[2020,3,6]],"date-time":"2020-03-06T13:07:36Z","timestamp":1583500056000},"page":"102701","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":6,"special_numbering":"C","title":["A new convolutive source separation approach for independent\/dependent source components"],"prefix":"10.1016","volume":"100","author":[{"given":"N.","family":"Mamouni","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3168-8429","authenticated-orcid":false,"given":"A.","family":"Keziou","sequence":"additional","affiliation":[]},{"given":"H.","family":"Fenniri","sequence":"additional","affiliation":[]},{"given":"A.","family":"Ghazdali","sequence":"additional","affiliation":[]},{"given":"A.","family":"Hakim","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.dsp.2020.102701_br0010","series-title":"Ninth Annual Meeting of the Organization for Human Brain Mapping","article-title":"Ica if fmri based on a convolutive mixture model","author":"Hansen","year":"2003"},{"issue":"9","key":"10.1016\/j.dsp.2020.102701_br0020","doi-asserted-by":"crossref","first-page":"1311","DOI":"10.1016\/j.neunet.2003.08.003","article-title":"Complex independent component analysis of frequency-domain electroencephalographic data","volume":"16","author":"Anem\u00fcller","year":"2003","journal-title":"Neural Netw."},{"issue":"6","key":"10.1016\/j.dsp.2020.102701_br0030","doi-asserted-by":"crossref","first-page":"1423","DOI":"10.1109\/72.883471","article-title":"An iterative inversion approach to blind source separation","volume":"11","author":"Cruces-Alvarez","year":"2000","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.dsp.2020.102701_br0040","series-title":"International Conference on Independent Component Analysis and Signal Separation","first-page":"181","article-title":"Blind separation of underwater acoustic signals","author":"Mansour","year":"2006"},{"issue":"9","key":"10.1016\/j.dsp.2020.102701_br0050","doi-asserted-by":"crossref","first-page":"1875","DOI":"10.1162\/0899766054322964","article-title":"The cocktail party problem","volume":"17","author":"Haykin","year":"2005","journal-title":"Neural Comput."},{"issue":"2","key":"10.1016\/j.dsp.2020.102701_br0060","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1051\/aas:2000292","article-title":"Blind source separation and analysis of multispectral astronomical images","volume":"147","author":"Nuzillard","year":"2000","journal-title":"Astron. Astrophys. Suppl. Ser."},{"key":"10.1016\/j.dsp.2020.102701_br0070","series-title":"International Conference on Independent Component Analysis and Signal Separation","first-page":"74","article-title":"Model structure selection in convolutive mixtures","author":"Dyrholm","year":"2006"},{"issue":"5","key":"10.1016\/j.dsp.2020.102701_br0080","doi-asserted-by":"crossref","first-page":"975","DOI":"10.1016\/j.sigpro.2004.11.021","article-title":"A general approach for mutual information minimization and its application to blind source separation","volume":"85","author":"Babaie-Zadeh","year":"2005","journal-title":"Signal Process."},{"issue":"3","key":"10.1016\/j.dsp.2020.102701_br0090","doi-asserted-by":"crossref","first-page":"1319","DOI":"10.1109\/TSP.2011.2177828","article-title":"New kurtosis optimization schemes for miso equalization","volume":"60","author":"Castella","year":"2011","journal-title":"IEEE Trans. Signal Process."},{"issue":"8","key":"10.1016\/j.dsp.2020.102701_br0100","doi-asserted-by":"crossref","first-page":"2158","DOI":"10.1109\/78.301850","article-title":"Criteria for multichannel signal separation","volume":"42","author":"Yellin","year":"1994","journal-title":"IEEE Trans. Signal Process."},{"issue":"2","key":"10.1016\/j.dsp.2020.102701_br0110","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1016\/0165-1684(95)00052-F","article-title":"Blind source separation for convolutive mixtures","volume":"45","author":"Thi","year":"1995","journal-title":"Signal Process."},{"issue":"6","key":"10.1016\/j.dsp.2020.102701_br0120","doi-asserted-by":"crossref","first-page":"1129","DOI":"10.1162\/neco.1995.7.6.1129","article-title":"An information-maximization approach to blind separation and blind deconvolution","volume":"7","author":"Bell","year":"1995","journal-title":"Neural Comput."},{"issue":"3","key":"10.1016\/j.dsp.2020.102701_br0130","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1016\/0165-1684(94)90029-9","article-title":"Independent component analysis, a new concept?","volume":"36","author":"Comon","year":"1994","journal-title":"Signal Process."},{"issue":"4\u20135","key":"10.1016\/j.dsp.2020.102701_br0140","doi-asserted-by":"crossref","first-page":"411","DOI":"10.1016\/S0893-6080(00)00026-5","article-title":"Independent component analysis: algorithms and applications","volume":"13","author":"Hyv\u00e4rinen","year":"2000","journal-title":"Neural Netw."},{"issue":"12","key":"10.1016\/j.dsp.2020.102701_br0150","doi-asserted-by":"crossref","first-page":"2434","DOI":"10.1109\/TASLP.2015.2485663","article-title":"Convolutive blind source separation using an iterative least-squares algorithm for non-orthogonal approximate joint diagonalization","volume":"23","author":"Saito","year":"2015","journal-title":"IEEE\/ACM Trans. Audio Speech Lang. Process."},{"issue":"1\u20133","key":"10.1016\/j.dsp.2020.102701_br0160","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1016\/S0925-2312(98)00047-2","article-title":"Blind separation of convolved mixtures in the frequency domain","volume":"22","author":"Smaragdis","year":"1998","journal-title":"Neurocomputing"},{"issue":"7","key":"10.1016\/j.dsp.2020.102701_br0170","doi-asserted-by":"crossref","first-page":"1640","DOI":"10.1093\/ietfec\/e88-a.7.1640","article-title":"Blind source separation of convolutive mixtures of speech in frequency domain","volume":"88","author":"Makino","year":"2005","journal-title":"IEICE Trans. Fundam. Electron. Commun. Comput. Sci."},{"issue":"7","key":"10.1016\/j.dsp.2020.102701_br0180","doi-asserted-by":"crossref","first-page":"1527","DOI":"10.1162\/089976601750264992","article-title":"Topographic independent component analysis","volume":"13","author":"Hyv\u00e4rinen","year":"2001","journal-title":"Neural Comput."},{"issue":"2","key":"10.1016\/j.dsp.2020.102701_br0190","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1016\/j.sigpro.2003.10.010","article-title":"Blind separation of sources that have spatiotemporal variance dependencies","volume":"84","author":"Hyv\u00e4rinen","year":"2004","journal-title":"Signal Process."},{"issue":"11","key":"10.1016\/j.dsp.2020.102701_br0200","doi-asserted-by":"crossref","first-page":"3404","DOI":"10.1016\/j.sigpro.2006.02.032","article-title":"Separation of statistically dependent sources using an l2-distance non-Gaussianity measure","volume":"86","author":"Caiafa","year":"2006","journal-title":"Signal Process."},{"issue":"1","key":"10.1016\/j.dsp.2020.102701_br0210","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1186\/1687-6180-2012-255","article-title":"On the conditions for valid objective functions in blind separation of independent and dependent sources","volume":"2012","author":"Caiafa","year":"2012","journal-title":"EURASIP J. Adv. Signal Process."},{"issue":"10\u201312","key":"10.1016\/j.dsp.2020.102701_br0220","doi-asserted-by":"crossref","first-page":"2209","DOI":"10.1016\/j.neucom.2007.06.012","article-title":"A robust model for spatiotemporal dependencies","volume":"71","author":"Theis","year":"2008","journal-title":"Neurocomputing"},{"key":"10.1016\/j.dsp.2020.102701_br0230","series-title":"2005 IEEE International Symposium on Circuits and Systems","first-page":"5878","article-title":"Blind signal separation into groups of dependent signals using joint block diagonalization","author":"Theis","year":"2005"},{"issue":"8","key":"10.1016\/j.dsp.2020.102701_br0240","doi-asserted-by":"crossref","first-page":"1180","DOI":"10.1109\/LSP.2014.2380312","article-title":"Separation of dependent autoregressive sources using joint matrix diagonalization","volume":"22","author":"Boudjellal","year":"2014","journal-title":"IEEE Signal Process. Lett."},{"key":"10.1016\/j.dsp.2020.102701_br0250","series-title":"AIP Conference Proceedings, vol. 872","first-page":"81","article-title":"A minimax entropy method for blind separation of dependent components in astrophysical images","author":"Caiafa","year":"2006"},{"key":"10.1016\/j.dsp.2020.102701_br0260","series-title":"21st European Signal Processing Conference","first-page":"1","article-title":"Using generic order moments for separation of dependent sources with linear conditional expectations","author":"Caiafa","year":"2013"},{"key":"10.1016\/j.dsp.2020.102701_br0270","article-title":"Dependent component analysis","volume":"185","author":"Kuruoglu","year":"2013","journal-title":"EURASIP J. Adv. Signal Process."},{"key":"10.1016\/j.dsp.2020.102701_br0280","series-title":"Proceedings of the 3rd International Conference on Astronomical Data Analysis","article-title":"Separation of dependent sources in astrophysical radiation maps using second order statistics","author":"Bedini","year":"2004"},{"issue":"1","key":"10.1016\/j.dsp.2020.102701_br0290","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1186\/1687-6180-2013-62","article-title":"Separation of instantaneous mixtures of a particular set of dependent sources using classical ica methods","volume":"2013","author":"Castella","year":"2013","journal-title":"EURASIP J. Adv. Signal Process."},{"key":"10.1016\/j.dsp.2020.102701_br0300","series-title":"International Conference on Latent Variable Analysis and Signal Separation","first-page":"538","article-title":"Dependent component analysis for cosmology: a case study","author":"Kuruoglu","year":"2010"},{"key":"10.1016\/j.dsp.2020.102701_br0310","series-title":"Blind Source Separation: Dependent Component Analysis","author":"Xiang","year":"2015"},{"issue":"22","key":"10.1016\/j.dsp.2020.102701_br0320","doi-asserted-by":"crossref","first-page":"5730","DOI":"10.1109\/TSP.2013.2280115","article-title":"A class of bounded component analysis algorithms for the separation of both independent and dependent sources","volume":"61","author":"Erdogan","year":"2013","journal-title":"IEEE Trans. Signal Process."},{"issue":"4","key":"10.1016\/j.dsp.2020.102701_br0330","doi-asserted-by":"crossref","first-page":"697","DOI":"10.1109\/TNNLS.2014.2320817","article-title":"Convolutive bounded component analysis algorithms for independent and dependent source separation","volume":"26","author":"Inan","year":"2015","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"1","key":"10.1016\/j.dsp.2020.102701_br0340","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1109\/TSP.2014.2367472","article-title":"A convolutive bounded component analysis framework for potentially nonstationary independent and\/or dependent sources","volume":"63","author":"Inan","year":"2015","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.dsp.2020.102701_br0350","doi-asserted-by":"crossref","first-page":"319","DOI":"10.1016\/j.sigpro.2014.04.017","article-title":"New blind source separation method of independent\/dependent sources","volume":"104","author":"Keziou","year":"2014","journal-title":"Signal Process."},{"key":"10.1016\/j.dsp.2020.102701_br0360","doi-asserted-by":"crossref","first-page":"502","DOI":"10.1016\/j.sigpro.2016.09.006","article-title":"Blind noisy mixture separation for independent\/dependent sources through a regularized criterion on copulas","volume":"131","author":"Ghazdali","year":"2017","journal-title":"Signal Process."},{"key":"10.1016\/j.dsp.2020.102701_br0370","series-title":"S\u00e9paration aveugle des sources en m\u00e9lange convolutif","author":"Simon","year":"1999"},{"key":"10.1016\/j.dsp.2020.102701_br0380","first-page":"229","article-title":"Fonctions de r\u00e9partition \u00e0 n dimensions et leurs marges","volume":"8","author":"Sklar","year":"1959","journal-title":"Publ. Inst. Stat. Univ. Paris"},{"key":"10.1016\/j.dsp.2020.102701_br0390","series-title":"An Introduction to Copulas","author":"Nelsen","year":"2007"},{"key":"10.1016\/j.dsp.2020.102701_br0400","series-title":"Multivariate Models and Multivariate Dependence Concepts","author":"Joe","year":"1997"},{"key":"10.1016\/j.dsp.2020.102701_br0410","series-title":"International Work-Conference on Artificial Neural Networks","first-page":"834","article-title":"Separating convolutive mixtures by mutual information minimization","author":"Babaie-Zadeh","year":"2001"},{"key":"10.1016\/j.dsp.2020.102701_br0420","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4899-3324-9","article-title":"Density Estimation for Statistics and Data Analysis","author":"Silverman","year":"1986"},{"issue":"3","key":"10.1016\/j.dsp.2020.102701_br0430","doi-asserted-by":"crossref","first-page":"389","DOI":"10.1002\/cjs.5540330306","article-title":"Pseudo-likelihood ratio tests for semiparametric multivariate copula model selection","volume":"33","author":"Chen","year":"2005","journal-title":"Can. J. Stat."},{"issue":"3","key":"10.1016\/j.dsp.2020.102701_br0440","doi-asserted-by":"crossref","first-page":"543","DOI":"10.1093\/biomet\/82.3.543","article-title":"A semiparametric estimation procedure of dependence parameters in multivariate families of distributions","volume":"82","author":"Genest","year":"1995","journal-title":"Biometrika"},{"issue":"3","key":"10.1016\/j.dsp.2020.102701_br0450","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1002\/cjs.5540330304","article-title":"Semiparametric estimation in copula models","volume":"33","author":"Tsukahara","year":"2005","journal-title":"Can. J. Stat."},{"issue":"1","key":"10.1016\/j.dsp.2020.102701_br0460","first-page":"178","article-title":"New estimates and tests of independence in semiparametric copula models","volume":"46","author":"Bouzebda","year":"2010","journal-title":"Kybernetika"},{"key":"10.1016\/j.dsp.2020.102701_br0470","series-title":"Autumn Quarter 2004","first-page":"2004","article-title":"Subgradient methods, lecture notes of EE392o","author":"Boyd","year":"2003"}],"container-title":["Digital Signal Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1051200420300464?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1051200420300464?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,4,21]],"date-time":"2021-04-21T01:49:35Z","timestamp":1618969775000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1051200420300464"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,5]]},"references-count":47,"alternative-id":["S1051200420300464"],"URL":"https:\/\/doi.org\/10.1016\/j.dsp.2020.102701","relation":{},"ISSN":["1051-2004"],"issn-type":[{"value":"1051-2004","type":"print"}],"subject":[],"published":{"date-parts":[[2020,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A new convolutive source separation approach for independent\/dependent source components","name":"articletitle","label":"Article Title"},{"value":"Digital Signal Processing","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.dsp.2020.102701","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"102701"}}