{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,9,13]],"date-time":"2023-09-13T16:51:39Z","timestamp":1694623899717},"reference-count":25,"publisher":"Elsevier BV","issue":"1-2","license":[{"start":{"date-parts":[[2005,4,1]],"date-time":"2005-04-01T00:00:00Z","timestamp":1112313600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2013,7,17]],"date-time":"2013-07-17T00:00:00Z","timestamp":1374019200000},"content-version":"vor","delay-in-days":3029,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Discrete Mathematics"],"published-print":{"date-parts":[[2005,4]]},"DOI":"10.1016\/j.disc.2004.04.038","type":"journal-article","created":{"date-parts":[[2005,3,8]],"date-time":"2005-03-08T23:29:05Z","timestamp":1110324545000},"page":"83-107","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"title":["On the smallest minimal blocking sets of Q<\/mml:mi>(<\/mml:mo>2<\/mml:mn>n<\/mml:mi>,<\/mml:mo>q<\/mml:mi>)<\/mml:mo><\/mml:math>, for q<\/mml:mi><\/mml:math> an odd prime"],"prefix":"10.1016","volume":"294","author":[{"given":"J.","family":"De Beule","sequence":"first","affiliation":[]},{"given":"L.","family":"Storme","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.disc.2004.04.038_bib1","doi-asserted-by":"crossref","unstructured":"S. Ball, On ovoids of O(5,q). Adv. Geom. 4(1) (2004) 1\u20137.","DOI":"10.1515\/advg.2004.004"},{"key":"10.1016\/j.disc.2004.04.038_bib2","unstructured":"S. Ball, P. Govaerts, L. Storme, On ovoids of parabolic quadrics, Des. Codes Cryptogr. to appear."},{"issue":"1","key":"10.1016\/j.disc.2004.04.038_bib3","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1007\/BF01305953","article-title":"Note on the size of a blocking set in PG(2,p)","volume":"14","author":"Blokhuis","year":"1994","journal-title":"Combinatorica"},{"key":"10.1016\/j.disc.2004.04.038_bib4","unstructured":"R.H. Bruck, Construction problems of finite projective planes, in: Combinatorial Mathematics and its Applications, University of North Carolina Press, Chapel Hill, NC, 1969, pp. 426\u2013514 (Proceedings of Conference, University of North Carolina, Chapel Hill, NC, 1967)."},{"issue":"2","key":"10.1016\/j.disc.2004.04.038_bib5","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1007\/BF00182289","article-title":"The collineation groups of the translation planes of order 25","volume":"39","author":"Czerwinski","year":"1991","journal-title":"Geom. Dedicata"},{"issue":"2","key":"10.1016\/j.disc.2004.04.038_bib6","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1016\/0097-3165(92)90065-3","article-title":"The translation planes of order twenty-five","volume":"59","author":"Czerwinski","year":"1992","journal-title":"J. Combin. Theory Ser. A"},{"key":"10.1016\/j.disc.2004.04.038_bib7","unstructured":"E.H. Davis, Translation planes of order 25with nontrivial X-OYperspectivities, in: Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing, Florida Atlantic University, Boca Raton, FL, 1979, pp. 341\u2013348 ((Winnipeg, Man.) Utilitas Math)."},{"key":"10.1016\/j.disc.2004.04.038_bib8","doi-asserted-by":"crossref","unstructured":"J. De Beule, A. Hoogewijs, L. Storme, On the size of minimal blocking sets of Q(4,q), for q=5,7. ACM SIGSAM Bull. 149 (2004) 67\u201384.","DOI":"10.1145\/1040034.1040037"},{"key":"10.1016\/j.disc.2004.04.038_bib9","doi-asserted-by":"crossref","unstructured":"J. De Beule, K. Metsch, Small point sets that meet all generators of Q(2n,p), p>3, p prime, J. Combin. Theory Ser. A 106(2) (2004) 327\u2013333.","DOI":"10.1016\/j.jcta.2004.02.001"},{"issue":"4","key":"10.1016\/j.disc.2004.04.038_bib10","doi-asserted-by":"crossref","first-page":"290","DOI":"10.1002\/jcd.10048","article-title":"The smallest minimal blocking sets of Q(6,q), q even","volume":"11","author":"De Beule","year":"2003","journal-title":"J. Combin. Des."},{"issue":"1\u20133","key":"10.1016\/j.disc.2004.04.038_bib11","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/S0012-365X(00)00418-0","article-title":"Covers and blocking sets of classical generalized quadrangles","volume":"238","author":"Eisfeld","year":"2001","journal-title":"Discrete Math."},{"key":"10.1016\/j.disc.2004.04.038_bib12","doi-asserted-by":"crossref","first-page":"659","DOI":"10.1006\/eujc.2002.0599","article-title":"On a particular class of minihypers and its applications III","volume":"23","author":"Govaerts","year":"2002","journal-title":"European J. Combin."},{"issue":"2","key":"10.1016\/j.disc.2004.04.038_bib13","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1006\/eujc.1996.0084","article-title":"The non-existence of ovoids in Og(q)","volume":"18","author":"Gunawardena","year":"1997","journal-title":"European J. Combin."},{"key":"10.1016\/j.disc.2004.04.038_bib14","series-title":"General Galois Geometries, Oxford Mathematical Monographs","author":"Hirschfeld","year":"1991"},{"issue":"5","key":"10.1016\/j.disc.2004.04.038_bib15","doi-asserted-by":"crossref","first-page":"1195","DOI":"10.4153\/CJM-1982-082-0","article-title":"Ovoids and translation planes","volume":"34","author":"Kantor","year":"1982","journal-title":"Canad. J. Math."},{"issue":"1","key":"10.1016\/j.disc.2004.04.038_bib16","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1007\/BF01388504","article-title":"The translation planes of order 49","volume":"5","author":"Mathon","year":"1995","journal-title":"Des. Codes Cryptogr."},{"key":"10.1016\/j.disc.2004.04.038_bib17","doi-asserted-by":"crossref","unstructured":"K. Metsch, Small point sets that meet all generators of W(2n+1,q). Des. Codes Cryptogr. 31(3) (2004) 283\u2013288.","DOI":"10.1023\/B:DESI.0000015888.27935.e2"},{"key":"10.1016\/j.disc.2004.04.038_bib18","unstructured":"D.J. Oakden, Spreads in three-dimensional projective space, Doctoral Thesis, University of Toronto, 1973."},{"issue":"1","key":"10.1016\/j.disc.2004.04.038_bib19","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/0195-6698(95)90092-6","article-title":"Ovoids of the quadric Q(2n,q)","volume":"16","author":"O\u2019Keefe","year":"1995","journal-title":"European J. Combin."},{"issue":"3","key":"10.1016\/j.disc.2004.04.038_bib20","doi-asserted-by":"crossref","first-page":"365","DOI":"10.1016\/0097-3165(76)90031-5","article-title":"A four-dimensional Kerdock set over GF(3)","volume":"20","author":"Patterson","year":"1976","journal-title":"J. Combin. Theory Ser. A"},{"key":"10.1016\/j.disc.2004.04.038_bib21","series-title":"Finite Generalized Quadrangles","author":"Payne","year":"1984"},{"issue":"2","key":"10.1016\/j.disc.2004.04.038_bib22","doi-asserted-by":"crossref","first-page":"250","DOI":"10.1016\/0097-3165(89)90050-2","article-title":"Nonexistence of ovoids in \u03a9+(10,3)","volume":"51","author":"Shult","year":"1989","journal-title":"J. Combin. Theory Ser. A"},{"issue":"1","key":"10.1016\/j.disc.2004.04.038_bib23","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/0097-3165(80)90049-7","article-title":"Polar spaces, generalized hexagons and perfect codes","volume":"29","author":"Thas","year":"1980","journal-title":"J. Combin. Theory Ser. A"},{"issue":"1\u20134","key":"10.1016\/j.disc.2004.04.038_bib24","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1007\/BF01447417","article-title":"Ovoids and spreads of finite classical polar spaces","volume":"10","author":"Thas","year":"1981","journal-title":"Geom. Dedicata"},{"key":"10.1016\/j.disc.2004.04.038_bib25","doi-asserted-by":"crossref","unstructured":"J.A. Thas, Old and new results on spreads and ovoids of finite classical polar spaces, in: Combinatorics \u201990 (Gaeta, 1990), North-Holland, Amsterdam, 1992 (Ann. Discrete Math. 52, 29\u2013544).","DOI":"10.1016\/S0167-5060(08)70936-1"}],"container-title":["Discrete Mathematics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0012365X05000191?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0012365X05000191?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,8,11]],"date-time":"2022-08-11T20:29:55Z","timestamp":1660249795000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0012365X05000191"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2005,4]]},"references-count":25,"journal-issue":{"issue":"1-2","published-print":{"date-parts":[[2005,4]]}},"alternative-id":["S0012365X05000191"],"URL":"https:\/\/doi.org\/10.1016\/j.disc.2004.04.038","relation":{},"ISSN":["0012-365X"],"issn-type":[{"value":"0012-365X","type":"print"}],"subject":[],"published":{"date-parts":[[2005,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"On the smallest minimal blocking sets of , for an odd prime","name":"articletitle","label":"Article Title"},{"value":"Discrete Mathematics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.disc.2004.04.038","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"Copyright \u00a9 2005 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}