{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,8]],"date-time":"2024-09-08T00:04:50Z","timestamp":1725753890588},"reference-count":35,"publisher":"Elsevier BV","issue":"4","license":[{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,1,30]],"date-time":"2023-01-30T00:00:00Z","timestamp":1675036800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Digital Communications and Networks"],"published-print":{"date-parts":[[2024,8]]},"DOI":"10.1016\/j.dcan.2023.01.020","type":"journal-article","created":{"date-parts":[[2023,2,14]],"date-time":"2023-02-14T07:53:50Z","timestamp":1676361230000},"page":"1178-1188","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"title":["Data-driven human and bot recognition from web activity logs based on hybrid learning techniques"],"prefix":"10.1016","volume":"10","author":[{"given":"Marek","family":"Gajewski","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9877-508X","authenticated-orcid":false,"given":"Olgierd","family":"Hryniewicz","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5361-5787","authenticated-orcid":false,"given":"Agnieszka","family":"Jastrz\u0119bska","sequence":"additional","affiliation":[]},{"given":"Mariusz","family":"Kozakiewicz","sequence":"additional","affiliation":[]},{"given":"Karol","family":"Opara","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2750-6584","authenticated-orcid":false,"given":"Jan Wojciech","family":"Owsi\u0144ski","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6642-0927","authenticated-orcid":false,"given":"S\u0142awomir","family":"Zadro\u017cny","sequence":"additional","affiliation":[]},{"given":"Tomasz","family":"Zwierzchowski","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"5","key":"10.1016\/j.dcan.2023.01.020_bib1","first-page":"1143","article-title":"Bot detection by monitoring and grouping domain name server record response queries in DNS traffic","volume":"40","author":"Vyas","year":"2019","journal-title":"J.\u00a0Inf. Optim. Sci."},{"key":"10.1016\/j.dcan.2023.01.020_bib2","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.105875","article-title":"Identifying legitimate web users and bots with different traffic profiles \u2013 an information bottleneck approach","volume":"197","author":"Suchacka","year":"2020","journal-title":"Knowl. Base Syst."},{"key":"10.1016\/j.dcan.2023.01.020_bib3","article-title":"An efficient reinforcement learning-based botnet detection approach","volume":"150","author":"Alauthman","year":"2020","journal-title":"J.\u00a0Netw. Comput. Appl."},{"key":"10.1016\/j.dcan.2023.01.020_bib4","doi-asserted-by":"crossref","first-page":"48753","DOI":"10.1109\/ACCESS.2021.3060778","article-title":"Multilayer framework for botnet detection using machine learning algorithms","volume":"9","author":"Ibrahim","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.dcan.2023.01.020_bib5","doi-asserted-by":"crossref","first-page":"1685","DOI":"10.1007\/s11042-021-11533-4","article-title":"A\u00a0hybrid approach for identifying non-human traffic in online digital advertising","volume":"81","author":"Almahmoud","year":"2022","journal-title":"Multimed. Tool. Appl."},{"key":"10.1016\/j.dcan.2023.01.020_bib6","series-title":"2021 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF)","first-page":"1","article-title":"Using machine learning techniques to identify bot accounts on a social network","author":"Belokurov","year":"2021"},{"key":"10.1016\/j.dcan.2023.01.020_bib7","series-title":"2017 3rd International Conference on Advances in Computing","first-page":"1","article-title":"Bot identification: helping analysts for right data in Twitter","author":"Velayutham","year":"2017"},{"key":"10.1016\/j.dcan.2023.01.020_bib8","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2021.107175","article-title":"A\u00a0real-time hostile activities analyses and detection system","volume":"104","author":"Dadkhah","year":"2021","journal-title":"Appl. Soft Comput."},{"issue":"1","key":"10.1016\/j.dcan.2023.01.020_bib9","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1109\/TNSM.2020.2972405","article-title":"BotChase: graph-based bot detection using machine learning","volume":"17","author":"Daya","year":"2020","journal-title":"IEEE Trans. Netw. Serv. Manag."},{"issue":"5","key":"10.1016\/j.dcan.2023.01.020_bib10","doi-asserted-by":"crossref","first-page":"3242","DOI":"10.1109\/JIOT.2020.3002255","article-title":"CorrAUC: a malicious Bot-IoT traffic detection method in IoT network using machine-learning techniques","volume":"8","author":"Shafiq","year":"2021","journal-title":"IEEE Internet Things J."},{"year":"2018","author":"Yin","series-title":"Talkingdata Adtracking Fraud Detection Challenge","key":"10.1016\/j.dcan.2023.01.020_bib11"},{"year":"2014","author":"Wang","series-title":"Click-through Rate Prediction","key":"10.1016\/j.dcan.2023.01.020_bib12"},{"key":"10.1016\/j.dcan.2023.01.020_bib13","article-title":"A\u00a0hybrid and effective learning approach for click fraud detection","volume":"3","author":"Thejas","year":"2021","journal-title":"Mach. Learn. Appl."},{"key":"10.1016\/j.dcan.2023.01.020_bib14","doi-asserted-by":"crossref","first-page":"159756","DOI":"10.1109\/ACCESS.2020.3020507","article-title":"A\u00a0distributed architecture for DDoS prediction and bot detection","volume":"8","author":"Rahal","year":"2020","journal-title":"IEEE Access"},{"year":"2015","author":"Kitts","first-page":"181","series-title":"Click Fraud Detection: Adversarial Pattern Recognition over 5 Years at Microsoft","key":"10.1016\/j.dcan.2023.01.020_bib15"},{"key":"10.1016\/j.dcan.2023.01.020_bib16","series-title":"2021 IEEE International Conference on Software Maintenance and Evolution (ICSME)","first-page":"654","article-title":"Human, bot or both? a study on the capabilities of classification models on mixed accounts","author":"Cassee","year":"2021"},{"key":"10.1016\/j.dcan.2023.01.020_bib17","doi-asserted-by":"crossref","DOI":"10.1016\/j.engappai.2020.104058","article-title":"BeCAPTCHA: behavioral bot detection using touchscreen and mobile sensors benchmarked on HuMIdb","volume":"98","author":"Acien","year":"2021","journal-title":"Eng. Appl. Artif. Intell."},{"key":"10.1016\/j.dcan.2023.01.020_bib18","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.107074","article-title":"Efficient on-the-fly web bot detection","volume":"223","author":"Suchacka","year":"2021","journal-title":"Knowl. Base Syst."},{"issue":"1","key":"10.1016\/j.dcan.2023.01.020_bib19","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2676869","article-title":"A network behavior-based botnet detection mechanism using PSO and k-means","volume":"6","author":"Li","year":"2015","journal-title":"ACM Trans. Manag. Inf. Syst."},{"key":"10.1016\/j.dcan.2023.01.020_bib20","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1016\/j.diin.2018.12.005","article-title":"Detecting bot-infected machines using DNS fingerprinting","volume":"28","author":"Singh","year":"2019","journal-title":"Digit. Invest."},{"year":"2013","author":"Song","article-title":"Multi-stage malicious click detection on large scale web advertising data","series-title":"Proc. Of 39th Very Large Data Bases Conference","key":"10.1016\/j.dcan.2023.01.020_bib21"},{"key":"10.1016\/j.dcan.2023.01.020_bib22","doi-asserted-by":"crossref","DOI":"10.1016\/j.cose.2020.102001","article-title":"New biostatistics features for detecting web bot activity on web applications","volume":"97","author":"Rahman","year":"2020","journal-title":"Comput. Secur."},{"issue":"3","key":"10.1016\/j.dcan.2023.01.020_bib23","doi-asserted-by":"crossref","first-page":"389","DOI":"10.4310\/SII.2016.v9.n3.a12","article-title":"An EM algorithm for click fraud detection","volume":"9","author":"Zhu","year":"2016","journal-title":"Stat. Interface"},{"issue":"1","key":"10.1016\/j.dcan.2023.01.020_bib24","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1186\/s13635-019-0095-1","article-title":"Crowdsourcing for click fraud detection","author":"Mouawi","year":"2019","journal-title":"EURASIP J. Inf. Secur."},{"issue":"6","key":"10.1016\/j.dcan.2023.01.020_bib25","doi-asserted-by":"crossref","DOI":"10.1016\/j.ipm.2021.102685","article-title":"On the efficacy of old features for the detection of new bots","volume":"58","author":"De Nicola","year":"2021","journal-title":"Inf. Process. Manag."},{"issue":"2","key":"10.1016\/j.dcan.2023.01.020_bib26","first-page":"216","article-title":"Gradient boosting learning for fraudulent publisher detection in online advertising","volume":"55","author":"Sisodia","year":"2020","journal-title":"Data Technol. Appl."},{"issue":"3","key":"10.1016\/j.dcan.2023.01.020_bib27","doi-asserted-by":"crossref","first-page":"1409","DOI":"10.1214\/20-AOAS1356","article-title":"Doubly robust treatment effect estimation with missing attributes","volume":"14","author":"Mayer","year":"2020","journal-title":"Ann. Appl. Stat."},{"key":"10.1016\/j.dcan.2023.01.020_bib28","doi-asserted-by":"crossref","first-page":"1179","DOI":"10.1007\/s10994-019-05829-8","article-title":"Feature ranking for multi-target regression","volume":"109","author":"Petkovic","year":"2020","journal-title":"Mach. Learn."},{"key":"10.1016\/j.dcan.2023.01.020_bib29","doi-asserted-by":"crossref","DOI":"10.1016\/j.bdr.2020.100170","article-title":"Flexible subspace clustering: a joint feature selection and k-means clustering framework","volume":"23","author":"Long","year":"2021","journal-title":"Big Data Res."},{"issue":"3","key":"10.1016\/j.dcan.2023.01.020_bib30","first-page":"2","article-title":"Comparison of internal clustering validation indices for prototype-based clustering","volume":"10","author":"Haemaelaeinen","year":"2017","journal-title":"Algorithms"},{"key":"10.1016\/j.dcan.2023.01.020_bib31","doi-asserted-by":"crossref","first-page":"865","DOI":"10.1007\/s00180-021-01145-9","article-title":"Multimodal information gain in bayesian design of experiments","volume":"37","author":"Long","year":"2022","journal-title":"Comput. Stat."},{"key":"10.1016\/j.dcan.2023.01.020_bib32","doi-asserted-by":"crossref","first-page":"3154","DOI":"10.1109\/TIFS.2021.3076932","article-title":"Gini-impurity index analysis","volume":"16","author":"Yuan","year":"2021","journal-title":"IEEE Trans. Inf. Forensics Secur."},{"issue":"1","key":"10.1016\/j.dcan.2023.01.020_bib33","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1080\/02664763.2020.1796944","article-title":"Extensions of empirical likelihood and chi-squared-based tests for ordered alternatives","volume":"49","author":"Pardo","year":"2022","journal-title":"J.\u00a0Appl. Stat."},{"key":"10.1016\/j.dcan.2023.01.020_bib34","doi-asserted-by":"crossref","first-page":"801","DOI":"10.1051\/ps\/2020015","article-title":"Random forests for time-dependent processes","volume":"24","author":"Goehry","year":"2020","journal-title":"ESAIM P. S."},{"issue":"2","key":"10.1016\/j.dcan.2023.01.020_bib35","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1080\/15481603.2017.1408892","article-title":"Less is more: optimizing classification performance through feature selection in a very-high-resolution remote sensing object-based urban application","volume":"55","author":"Georganos","year":"2018","journal-title":"GIScience Remote Sens."}],"container-title":["Digital Communications and Networks"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2352864823000330?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S2352864823000330?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,7]],"date-time":"2024-09-07T03:21:57Z","timestamp":1725679317000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S2352864823000330"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,8]]},"references-count":35,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2024,8]]}},"alternative-id":["S2352864823000330"],"URL":"https:\/\/doi.org\/10.1016\/j.dcan.2023.01.020","relation":{},"ISSN":["2352-8648"],"issn-type":[{"type":"print","value":"2352-8648"}],"subject":[],"published":{"date-parts":[[2024,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Data-driven human and bot recognition from web activity logs based on hybrid learning techniques","name":"articletitle","label":"Article Title"},{"value":"Digital Communications and Networks","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.dcan.2023.01.020","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Chongqing University of Posts and Telecommunications. Publishing Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.","name":"copyright","label":"Copyright"}]}}