{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,2]],"date-time":"2024-10-02T14:10:34Z","timestamp":1727878234250},"reference-count":61,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/100007224","name":"National Foundation for Science and Technology Development","doi-asserted-by":"publisher","award":["102.05-2020.26"],"id":[{"id":"10.13039\/100007224","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Data & Knowledge Engineering"],"published-print":{"date-parts":[[2022,9]]},"DOI":"10.1016\/j.datak.2022.102077","type":"journal-article","created":{"date-parts":[[2022,8,24]],"date-time":"2022-08-24T15:26:54Z","timestamp":1661354814000},"page":"102077","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Combining Specialized Word Embeddings and Subword Semantic Features for Lexical Entailment Recognition"],"prefix":"10.1016","volume":"141","author":[{"given":"Van-Tan","family":"Bui","sequence":"first","affiliation":[]},{"given":"Phuong-Thai","family":"Nguyen","sequence":"additional","affiliation":[]},{"given":"Van-Lam","family":"Pham","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"unstructured":"Phuong\u00a0Thai Nguyen, Van\u00a0Lam Pham, Hoang\u00a0Anh Nguyen, Huy\u00a0Hien Vu, Ngoc\u00a0Anh Tran, Truong Thi\u00a0Thu Ha, A Two-Phase Approach for Building Vietnamese WordNet, in: The 8th Global Wordnet Conference, 2015, pp. 259\u2013264.","key":"10.1016\/j.datak.2022.102077_b1"},{"key":"10.1016\/j.datak.2022.102077_b2","series-title":"EMNLP","first-page":"403","article-title":"Learning term embeddings for taxonomic relation identification using dynamic weighting neural network","author":"Luu","year":"2016"},{"key":"10.1016\/j.datak.2022.102077_b3","series-title":"LREC","article-title":"A large DataBase of hypernymy relations extracted from the web","author":"Seitner","year":"2016"},{"key":"10.1016\/j.datak.2022.102077_b4","series-title":"EMNLP","first-page":"233","article-title":"Hierarchical embeddings for hypernymy detection and directionality","author":"Nguyen","year":"2017"},{"issue":"3","key":"10.1016\/j.datak.2022.102077_b5","doi-asserted-by":"crossref","first-page":"435","DOI":"10.1162\/coli.08-032-R1-06-96","article-title":"Bootstrapping distributional feature vector quality","volume":"35","author":"Geffet","year":"2009","journal-title":"Comput. Linguist."},{"issue":"3","key":"10.1016\/j.datak.2022.102077_b6","doi-asserted-by":"crossref","first-page":"437","DOI":"10.1017\/S1351324913000387","article-title":"Experiments with three approaches to recognizing lexical entailment","volume":"21","author":"Turney","year":"2015","journal-title":"Nat. Lang. Eng."},{"year":"1998","series-title":"WordNet: An Electronic Lexical Database","key":"10.1016\/j.datak.2022.102077_b7"},{"key":"10.1016\/j.datak.2022.102077_b8","series-title":"ACL","first-page":"216","article-title":"Babelnet: Building a very large multilingual semantic network","author":"Navigli","year":"2010"},{"key":"10.1016\/j.datak.2022.102077_b9","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-031-02151-0","article-title":"Recognizing textual entailment: Models and applications","author":"Dagan","year":"2013"},{"key":"10.1016\/j.datak.2022.102077_b10","series-title":"IJCNLP","first-page":"788","article-title":"Classifying taxonomic relations between pairs of wikipedia articles","author":"Biran","year":"2013"},{"year":"2013","author":"Mohler","series-title":"Semantic signatures for example-based linguistic metaphor detection","key":"10.1016\/j.datak.2022.102077_b11"},{"key":"10.1016\/j.datak.2022.102077_b12","series-title":"CIKM","first-page":"1329","article-title":"Taxonomy induction using hypernym subsequences","author":"Gupta","year":"2017"},{"key":"10.1016\/j.datak.2022.102077_b13","series-title":"EMNLP","first-page":"1393","article-title":"Bilingual word embeddings for phrase-based machine translation","author":"Zou","year":"2013"},{"key":"10.1016\/j.datak.2022.102077_b14","series-title":"Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing","article-title":"A large annotated corpus for learning natural language inference","author":"Bowman","year":"2015"},{"year":"2015","author":"Nayak","series-title":"Learning hypernymy over word embeddings","key":"10.1016\/j.datak.2022.102077_b15"},{"unstructured":"Zheng Yu, Haixun Wang, Xuemin Lin, Min Wang, Learning Term Embeddings for Hypernymy Identification, in: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015, 2015, pp. 1390\u20131397.","key":"10.1016\/j.datak.2022.102077_b16"},{"key":"10.1016\/j.datak.2022.102077_b17","series-title":"Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers)","first-page":"1134","article-title":"Specialising word vectors for lexical entailment","author":"Vuli\u0107","year":"2018"},{"issue":"3","key":"10.1016\/j.datak.2022.102077_b18","doi-asserted-by":"crossref","first-page":"487","DOI":"10.1007\/s10579-015-9308-5","article-title":"Vietnamese treebank construction and entropy-based error detection","volume":"49","author":"Nguyen","year":"2015","journal-title":"Lang. Resour. Eval."},{"key":"10.1016\/j.datak.2022.102077_b19","first-page":"214","article-title":"The impact of corpora on dictionaries","author":"Hanks","year":"2009","journal-title":"Contemp. Corpus Linguist."},{"doi-asserted-by":"crossref","unstructured":"Marti\u00a0A. Hearst, Automatic Acquisition of Hyponyms from Large Text Corpora, in: 14th International Conference on Computational Linguistics, COLING 1992, Nantes, France, August 23-28, 1992, 1992, pp. 539\u2013545.","key":"10.1016\/j.datak.2022.102077_b20","DOI":"10.3115\/992133.992154"},{"key":"10.1016\/j.datak.2022.102077_b21","first-page":"1297","article-title":"Learning syntactic patterns for automatic hypernym discovery","volume":"17","author":"Snow","year":"2005","journal-title":"Adv. Neural Inf. Process. Syst."},{"doi-asserted-by":"crossref","unstructured":"Anh\u00a0Tuan Luu, Jung-jae Kim, See-Kiong Ng, Incorporating Trustiness and Collective Synonym\/Contrastive Evidence into Taxonomy Construction, in: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, 2015, pp. 1013\u20131022.","key":"10.1016\/j.datak.2022.102077_b22","DOI":"10.18653\/v1\/D15-1117"},{"key":"10.1016\/j.datak.2022.102077_b23","series-title":"EACL (1)","first-page":"65","article-title":"Hypernyms under siege: Linguistically-motivated artillery for hypernymy detection","author":"Shwartz","year":"2017"},{"key":"10.1016\/j.datak.2022.102077_b24","series-title":"Proc. 2012 ACM SIGMOD Int. Conf. Manag. Data","first-page":"481","article-title":"Probase: A probabilistic taxonomy for text understanding","author":"Wu","year":"2012"},{"key":"10.1016\/j.datak.2022.102077_b25","series-title":"Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining","first-page":"601","article-title":"Knowledge vault: A web-scale approach to probabilistic knowledge fusion","author":"Dong","year":"2014"},{"key":"10.1016\/j.datak.2022.102077_b26","series-title":"ECIR (1)","first-page":"126","article-title":"Patch-based identification of lexical semantic relations","volume":"vol. 12035","author":"Bannour","year":"2020"},{"key":"10.1016\/j.datak.2022.102077_b27","series-title":"COLING-ACL","first-page":"768","article-title":"Automatic retrieval and clustering of similar words.","author":"Lin","year":"1998"},{"doi-asserted-by":"crossref","unstructured":"Maayan Geffet, Ido Dagan, The Distributional Inclusion Hypotheses and Lexical Entailment, in: ACL 2005, 43rd Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference, 25-30 June 2005, University of Michigan, USA, 2005, pp. 107\u2013114.","key":"10.1016\/j.datak.2022.102077_b28","DOI":"10.3115\/1219840.1219854"},{"doi-asserted-by":"crossref","unstructured":"Julie Weeds, David\u00a0J. Weir, Diana McCarthy, Characterising Measures of Lexical Distributional Similarity, in: COLING, 2004.","key":"10.1016\/j.datak.2022.102077_b29","DOI":"10.3115\/1220355.1220501"},{"key":"10.1016\/j.datak.2022.102077_b30","series-title":"Proceedings of the Workshop on Geometrical Models of Natural Language Semantics","first-page":"112","article-title":"Context-theoretic semantics for natural language: An overview","author":"Clarke","year":"2009"},{"issue":"4","key":"10.1016\/j.datak.2022.102077_b31","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1017\/S1351324910000124","article-title":"Directional distributional similarity for lexical inference","volume":"16","author":"Kotlerman","year":"2010","journal-title":"Nat. Lang. Eng."},{"key":"10.1016\/j.datak.2022.102077_b32","series-title":"*SEM 2012: The First Joint Conference on Lexical and Computational Semantics \u2013 Volume 1: Proceedings of the Main Conference and the Shared Task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation","first-page":"75","article-title":"Identifying hypernyms in distributional semantic spaces","author":"Lenci","year":"2012"},{"issue":"23","key":"10.1016\/j.datak.2022.102077_b33","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1080\/00437956.1954.11659520","article-title":"Distributional structure","volume":"10","author":"Harris","year":"1954","journal-title":"Word"},{"key":"10.1016\/j.datak.2022.102077_b34","first-page":"1","article-title":"A synopsis of linguistic theory 1930\u20131955","author":"Firth","year":"1957","journal-title":"Stud. Linguist. Anal."},{"unstructured":"Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean, Efficient Estimation of Word Representations in Vector Space, in: Proceedings of the 1st International Conference on Learning Representations, 2013.","key":"10.1016\/j.datak.2022.102077_b35"},{"doi-asserted-by":"crossref","unstructured":"Jeffrey Pennington, Richard Socher, Christopher\u00a0D. Manning, Glove: Global Vectors for Word Representation, in: EMNLP, 14, 2014, pp. 1532\u20131543.","key":"10.1016\/j.datak.2022.102077_b36","DOI":"10.3115\/v1\/D14-1162"},{"key":"10.1016\/j.datak.2022.102077_b37","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1162\/tacl_a_00051","article-title":"Enriching word vectors with subword information","volume":"5","author":"Bojanowski","year":"2017","journal-title":"Trans. Assoc. Comput. Linguist."},{"key":"10.1016\/j.datak.2022.102077_b38","series-title":"NAACL-HLT","first-page":"2227","article-title":"Deep contextualized word representations","author":"Peters","year":"2018"},{"key":"10.1016\/j.datak.2022.102077_b39","series-title":"Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies","first-page":"4171","article-title":"BERT: Pre-training of deep bidirectional transformers for language understanding","author":"Devlin","year":"2019"},{"issue":"8","key":"10.1016\/j.datak.2022.102077_b40","first-page":"9","article-title":"Language models are unsupervised multitask learners","volume":"1","author":"Radford","year":"2019","journal-title":"OpenAI Blog"},{"unstructured":"Maximilian Nickel, Douwe Kiela, Poincar\u00e9 Embeddings for Learning Hierarchical Representations, in: NIPS, 2017, pp. 6341\u20136350.","key":"10.1016\/j.datak.2022.102077_b41"},{"key":"10.1016\/j.datak.2022.102077_b42","series-title":"EMNLP","first-page":"1757","article-title":"Dual tensor model for detecting asymmetric lexico-semantic relations","author":"Glavas","year":"2017"},{"key":"10.1016\/j.datak.2022.102077_b43","series-title":"ACL (1)","first-page":"3286","article-title":"Relational word embeddings","author":"Camacho-Collados","year":"2019"},{"key":"10.1016\/j.datak.2022.102077_b44","series-title":"Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume","first-page":"1034","article-title":"Data augmentation for hypernymy detection","author":"Kober","year":"2021"},{"key":"10.1016\/j.datak.2022.102077_b45","series-title":"ACL","first-page":"3630","article-title":"BiRRE: Learning bidirectional residual relation embeddings for supervised hypernymy detection","author":"Wang","year":"2020"},{"year":"2022","author":"Parmar","series-title":"Hyperbox: A supervised approach for hypernym discovery using box embeddings","key":"10.1016\/j.datak.2022.102077_b46"},{"issue":"3","key":"10.1016\/j.datak.2022.102077_b47","doi-asserted-by":"crossref","first-page":"665","DOI":"10.1162\/COLI_a_00146","article-title":"Ontolearn reloaded: A graph-based algorithm for taxonomy induction","volume":"39","author":"Velardi","year":"2013","journal-title":"Comput. Linguist."},{"doi-asserted-by":"crossref","unstructured":"Omer Levy, Steffen Remus, Chris Biemann, Ido Dagan, Do Supervised Distributional Methods Really Learn Lexical Inference Relations?, in: HLT-NAACL, 2015, pp. 970\u2013976.","key":"10.1016\/j.datak.2022.102077_b48","DOI":"10.3115\/v1\/N15-1098"},{"key":"10.1016\/j.datak.2022.102077_b49","series-title":"EMNLP","first-page":"1190","article-title":"A short survey on taxonomy learning from text corpora: Issues, resources and recent advances","author":"Wang","year":"2017"},{"key":"10.1016\/j.datak.2022.102077_b50","series-title":"EACL","first-page":"38","article-title":"Chasing hypernyms in vector spaces with entropy","author":"Santus","year":"2014"},{"key":"10.1016\/j.datak.2022.102077_b51","series-title":"Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers)","first-page":"119","article-title":"Exploiting image generality for lexical entailment detection","author":"Kiela","year":"2015"},{"key":"10.1016\/j.datak.2022.102077_b52","series-title":"ICLR","article-title":"Neural machine translation by jointly learning to align and translate","author":"Bahdanau","year":"2015"},{"doi-asserted-by":"crossref","unstructured":"Michael Lesk, Automatic Sense Disambiguation Using Machine Readable Dictionaries: How to Tell a Pine Cone from an Ice Cream Cone, in: Proceedings of SIGDOC, 1986.","key":"10.1016\/j.datak.2022.102077_b53","DOI":"10.1145\/318723.318728"},{"unstructured":"Satanjeev Banerjee, Ted Pedersen, Extended Gloss Overlaps as a Measure of Semantic Relatedness, in: IJCAI-03, Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, Acapulco, Mexico, August 9-15, 2003, 2003, pp. 805\u2013810.","key":"10.1016\/j.datak.2022.102077_b54"},{"doi-asserted-by":"crossref","unstructured":"Van\u00a0Tan Bui, Phuong\u00a0Thai Nguyen, Van\u00a0Lam Pham, Construction of a word similarity dataset and evaluation of word similarity techniques for Vietnamese, in: 9th International Conference on Knowledge and Systems Engineering, KSE, Hue, Vietnam, October 19-21, 2017, 2017, pp. 65\u201370.","key":"10.1016\/j.datak.2022.102077_b55","DOI":"10.1109\/KSE.2017.8119436"},{"issue":"3","key":"10.1016\/j.datak.2022.102077_b56","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Mach. Learn."},{"unstructured":"Marco Baroni, Raffaella Bernardi, Ngoc-Quynh Do, Chung-chieh Shan, Entailment above the word level in distributional semantics, in: EACL 2012, 13th Conference of the European Chapter of the Association for Computational Linguistics, Avignon, France, April 23-27, 2012, 2012, pp. 23\u201332.","key":"10.1016\/j.datak.2022.102077_b57"},{"key":"10.1016\/j.datak.2022.102077_b58","series-title":"COLING 2014, 25th International Conference on Computational Linguistics, Proceedings of the Conference: Technical Papers","first-page":"2249","article-title":"Learning to distinguish hypernyms and co-hyponyms","author":"Weeds","year":"2014"},{"unstructured":"Marco Baroni, Alessandro Lenci, How We BLESSed Distributional Semantic Evaluation, in: Proceedings of the GEMS 2011 Workshop on GEometrical Models of Natural Language Semantics, 2011, pp. 1\u201310.","key":"10.1016\/j.datak.2022.102077_b59"},{"issue":"3\u20134","key":"10.1016\/j.datak.2022.102077_b60","first-page":"291","article-title":"A lexicon for Vietnamese language processing","volume":"40","author":"Nguyen","year":"2006","journal-title":"Lang. Resour. Eval."},{"issue":"4","key":"10.1016\/j.datak.2022.102077_b61","doi-asserted-by":"crossref","DOI":"10.1162\/COLI_a_00301","article-title":"Hyperlex: A large-scale evaluation of graded lexical entailment","volume":"43","author":"Vulic","year":"2017","journal-title":"Comput. Linguist."}],"container-title":["Data & Knowledge Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169023X22000696?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0169023X22000696?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,2]],"date-time":"2024-10-02T13:30:21Z","timestamp":1727875821000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0169023X22000696"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,9]]},"references-count":61,"alternative-id":["S0169023X22000696"],"URL":"https:\/\/doi.org\/10.1016\/j.datak.2022.102077","relation":{},"ISSN":["0169-023X"],"issn-type":[{"type":"print","value":"0169-023X"}],"subject":[],"published":{"date-parts":[[2022,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Combining Specialized Word Embeddings and Subword Semantic Features for Lexical Entailment Recognition","name":"articletitle","label":"Article Title"},{"value":"Data & Knowledge Engineering","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.datak.2022.102077","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"102077"}}