{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T07:27:54Z","timestamp":1726471674074},"reference-count":55,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Vision and Image Understanding"],"published-print":{"date-parts":[[2022,7]]},"DOI":"10.1016\/j.cviu.2022.103442","type":"journal-article","created":{"date-parts":[[2022,5,4]],"date-time":"2022-05-04T21:28:18Z","timestamp":1651699698000},"page":"103442","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":14,"special_numbering":"C","title":["Multi-human Fall Detection and Localization in Videos"],"prefix":"10.1016","volume":"220","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-9564-8904","authenticated-orcid":false,"given":"Mouglas Eug\u00eanio Nas\u00e1rio","family":"Gomes","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2527-4548","authenticated-orcid":false,"given":"David","family":"Mac\u00eado","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6421-9747","authenticated-orcid":false,"given":"Cleber","family":"Zanchettin","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2396-7973","authenticated-orcid":false,"given":"Paulo Salgado Gomes","family":"de-Mattos-Neto","sequence":"additional","affiliation":[]},{"given":"Adriano","family":"Oliveira","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cviu.2022.103442_b1","series-title":"2017 Fifteenth IAPR International Conference on Machine Vision Applications","first-page":"81","article-title":"Activity recognition for indoor fall detection using convolutional neural network","author":"Adhikari","year":"2017"},{"key":"10.1016\/j.cviu.2022.103442_b2","series-title":"International Multi Topic Conference","first-page":"101","article-title":"Human fall detection","author":"Ali","year":"2013"},{"year":"2010","series-title":"Multiple Cameras Fall Dataset","author":"Auvinet","key":"10.1016\/j.cviu.2022.103442_b3"},{"key":"10.1016\/j.cviu.2022.103442_b4","doi-asserted-by":"crossref","unstructured":"Carreira,\u00a0Joao, Zisserman,\u00a0Andrew, 2017. Quo vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6299\u20136308.","DOI":"10.1109\/CVPR.2017.502"},{"issue":"1","key":"10.1016\/j.cviu.2022.103442_b5","first-page":"93","article-title":"Perfil e ambiente de idosos v\u00edtimas de quedas atendidos em um ambulat\u00f3rio de geriatria e gerontologia no distrito federal","volume":"18","author":"Cavalcante","year":"2015","journal-title":"Revista Kair\u00f3s: Gerontologia"},{"year":"2017","series-title":"Centers for disease control and prevention\u2014Important facts about falls","author":"CDC","key":"10.1016\/j.cviu.2022.103442_b6"},{"key":"10.1016\/j.cviu.2022.103442_b7","doi-asserted-by":"crossref","first-page":"38670","DOI":"10.1109\/ACCESS.2019.2906693","article-title":"A machine learning approach for fall detection and daily living activity recognition","volume":"7","author":"Chelli","year":"2019","journal-title":"IEEE Access"},{"issue":"1","key":"10.1016\/j.cviu.2022.103442_b8","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1109\/TITB.2012.2226905","article-title":"A framework for daily activity monitoring and fall detection based on surface electromyography and accelerometer signals","volume":"17","author":"Cheng","year":"2012","journal-title":"IEEE J. Biomed. Health Inf."},{"key":"10.1016\/j.cviu.2022.103442_b9","doi-asserted-by":"crossref","unstructured":"Chu,\u00a0Hau, Lee,\u00a0Jia-Hong, Lee,\u00a0Yao-Chih, Hsu,\u00a0Ching-Hsien, Li,\u00a0Jia-Da, Chen,\u00a0Chu-Song, 2021. Part-Aware Measurement for Robust Multi-View Multi-Human 3D Pose Estimation and Tracking. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition. pp. 1472\u20131481.","DOI":"10.1109\/CVPRW53098.2021.00163"},{"year":"2000","series-title":"An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods","author":"Cristianini","key":"10.1016\/j.cviu.2022.103442_b10"},{"key":"10.1016\/j.cviu.2022.103442_b11","first-page":"01","article-title":"Kalman filter for vision tracking","volume":"33","author":"Cuevas","year":"2005","journal-title":"Measurement"},{"key":"10.1016\/j.cviu.2022.103442_b12","series-title":"Workshop Proceedings of the 7th International Conference on Intelligent Environments. Vol. 10","first-page":"441","article-title":"Camera based fall detection using multiple features validated with real life video","author":"Debard","year":"2011"},{"issue":"1\u20132","key":"10.1016\/j.cviu.2022.103442_b13","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.cviu.2006.10.012","article-title":"Vision-based hand pose estimation: A review","volume":"108","author":"Erol","year":"2007","journal-title":"Comput. Vis. Image Underst."},{"key":"10.1016\/j.cviu.2022.103442_b14","doi-asserted-by":"crossref","unstructured":"Gu,\u00a0Chunhui, Sun,\u00a0Chen, Ross,\u00a0David\u00a0A., Vondrick,\u00a0Carl, Pantofaru,\u00a0Caroline, Li,\u00a0Yeqing, Vijayanarasimhan,\u00a0Sudheendra, Toderici,\u00a0George, Ricco,\u00a0Susanna, Sukthankar,\u00a0Rahul, et al., 2018. Ava: A video dataset of spatio-temporally localized atomic visual actions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 6047\u20136056.","DOI":"10.1109\/CVPR.2018.00633"},{"issue":"5","key":"10.1016\/j.cviu.2022.103442_b15","doi-asserted-by":"crossref","first-page":"624","DOI":"10.1109\/TKDE.2008.181","article-title":"Adapted one-versus-all decision trees for data stream classification","volume":"21","author":"Hashemi","year":"2008","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"10.1016\/j.cviu.2022.103442_b16","first-page":"900","article-title":"Neural networks: principles and practice","volume":"11","author":"Haykin","year":"2001","journal-title":"Bookman"},{"key":"10.1016\/j.cviu.2022.103442_b17","series-title":"Kalman Filtering and Neural Networks","first-page":"47","author":"Haykin","year":"2004"},{"issue":"3","key":"10.1016\/j.cviu.2022.103442_b18","doi-asserted-by":"crossref","first-page":"334","DOI":"10.1109\/TSMCC.2004.829274","article-title":"A survey on visual surveillance of object motion and behaviors","volume":"34","author":"Hu","year":"2004","journal-title":"IEEE Trans. Syst. Man Cybern. C (Appl. Rev.)"},{"key":"10.1016\/j.cviu.2022.103442_b19","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1115\/1.3662552","article-title":"A new approach to linear filtering and prediction problems","volume":"82","author":"Kalman","year":"1960","journal-title":"Trans. ASME J. Basic Eng."},{"issue":"3","key":"10.1016\/j.cviu.2022.103442_b20","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1016\/j.cmpb.2014.09.005","article-title":"Human fall detection on an embedded platform using depth maps and wireless accelerometer","volume":"117","author":"Kwolek","year":"2014","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cviu.2022.103442_b21","doi-asserted-by":"crossref","unstructured":"Li,\u00a0Ruey-Hsia, Belford,\u00a0Geneva\u00a0G., 2002. Instability of decision tree classification algorithms. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. pp. 570\u2013575.","DOI":"10.1145\/775047.775131"},{"key":"10.1016\/j.cviu.2022.103442_b22","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1016\/j.cviu.2017.10.011","article-title":"VideoLSTM convolves, attends and flows for action recognition","volume":"166","author":"Li","year":"2018","journal-title":"Comput. Vis. Image Underst."},{"key":"10.1016\/j.cviu.2022.103442_b23","doi-asserted-by":"crossref","first-page":"353","DOI":"10.1016\/j.aasri.2012.06.054","article-title":"An improved algorithm of automatic fall detection","volume":"1","author":"Liu","year":"2012","journal-title":"AASRI Procedia"},{"issue":"10","key":"10.1016\/j.cviu.2022.103442_b24","doi-asserted-by":"crossref","first-page":"1995","DOI":"10.3390\/app8101995","article-title":"An image-based fall detection system for the elderly","volume":"8","author":"Lu","year":"2018","journal-title":"Appl. Sci."},{"key":"10.1016\/j.cviu.2022.103442_b25","first-page":"1","article-title":"Deep learning for fall detection: 3D-CNN combined with LSTM on video kinematic data","volume":"02","author":"Lu","year":"2018","journal-title":"IEEE J. Biomed. Health Inf."},{"key":"10.1016\/j.cviu.2022.103442_b26","series-title":"2016 International Conference on Electronics, Communications and Computers","first-page":"94","article-title":"Feature selection to detect fallen pose using depth images","author":"Maldonado","year":"2016"},{"key":"10.1016\/j.cviu.2022.103442_b27","series-title":"2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops","first-page":"514","article-title":"Trajectons: Action recognition through the motion analysis of tracked features","author":"Matikainen","year":"2009"},{"key":"10.1016\/j.cviu.2022.103442_b28","series-title":"2009 IEEE 12th International Conference on Computer Vision","first-page":"104","article-title":"Activity recognition using the velocity histories of tracked keypoints","author":"Messing","year":"2009"},{"issue":"2\u20133","key":"10.1016\/j.cviu.2022.103442_b29","doi-asserted-by":"crossref","first-page":"90","DOI":"10.1016\/j.cviu.2006.08.002","article-title":"A survey of advances in vision-based human motion capture and analysis","volume":"104","author":"Moeslund","year":"2006","journal-title":"Comput. Vis. Image Underst."},{"key":"10.1016\/j.cviu.2022.103442_b30","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1016\/j.procs.2017.01.191","article-title":"Human fall detection from depth images using position and velocity of the subject","volume":"105","author":"Nizam","year":"2017","journal-title":"Procedia Comput. Sci."},{"year":"2018","series-title":"Deepfall\u2013noninvasive fall detection with deep spatio-temporal convolutional autoencoders","author":"Nogas","key":"10.1016\/j.cviu.2022.103442_b31"},{"key":"10.1016\/j.cviu.2022.103442_b32","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1016\/j.bspc.2018.04.014","article-title":"Human fall detection using machine vision techniques on RGB\u2013D images","volume":"44","author":"Panahi","year":"2018","journal-title":"Biomed. Signal Process. Control"},{"issue":"7","key":"10.1016\/j.cviu.2022.103442_b33","doi-asserted-by":"crossref","first-page":"677","DOI":"10.1109\/34.598226","article-title":"Visual interpretation of hand gestures for human\u2013computer interaction: A review","volume":"19","author":"Pavlovic","year":"1997","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.cviu.2022.103442_b34","series-title":"European Conference on Computer Vision","first-page":"744","article-title":"Multi-region two-stream R-CNN for action detection","author":"Peng","year":"2016"},{"issue":"6","key":"10.1016\/j.cviu.2022.103442_b35","doi-asserted-by":"crossref","first-page":"976","DOI":"10.1016\/j.imavis.2009.11.014","article-title":"A survey on vision-based human action recognition","volume":"28","author":"Poppe","year":"2010","journal-title":"Image Vis. Comput."},{"key":"10.1016\/j.cviu.2022.103442_b36","series-title":"IJCNN-91-Seattle International Joint Conference on Neural Networks. Vol. 1","first-page":"771","article-title":"Decoupled extended Kalman filter training of feedforward layered networks","author":"Puskorius","year":"1991"},{"key":"10.1016\/j.cviu.2022.103442_b37","series-title":"Public Library of Science San Francisco, CA USA. Vol. 14","article-title":"Deep learning approach to peripheral leukocyte recognition","author":"Qiwei","year":"2019"},{"year":"2018","series-title":"YOLOV3: An incremental improvement","author":"Redmon","key":"10.1016\/j.cviu.2022.103442_b38"},{"key":"10.1016\/j.cviu.2022.103442_b39","series-title":"Advances in Neural Information Processing Systems","first-page":"91","article-title":"Faster R-CNN: Towards real-time object detection with region proposal networks","author":"Ren","year":"2015"},{"key":"10.1016\/j.cviu.2022.103442_b40","doi-asserted-by":"crossref","first-page":"77702","DOI":"10.1109\/ACCESS.2019.2922708","article-title":"Research of fall detection and fall prevention technologies: A systematic review","volume":"7","author":"Ren","year":"2019","journal-title":"IEEE Access"},{"issue":"4","key":"10.1016\/j.cviu.2022.103442_b41","doi-asserted-by":"crossref","first-page":"308","DOI":"10.7326\/0003-4819-113-4-308","article-title":"The value of assessing falls in an elderly population","volume":"113","author":"Rubenstein","year":"1990","journal-title":"Ann. Intern. Med."},{"issue":"3","key":"10.1016\/j.cviu.2022.103442_b42","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1007\/s11263-015-0816-y","article-title":"Imagenet large scale visual recognition challenge","volume":"115","author":"Russakovsky","year":"2015","journal-title":"Int. J. Comput. Vis."},{"issue":"7","key":"10.1016\/j.cviu.2022.103442_b43","doi-asserted-by":"crossref","first-page":"1644","DOI":"10.3390\/s19071644","article-title":"Accelerometer-based human fall detection using convolutional neural networks","volume":"19","author":"Santos","year":"2019","journal-title":"Sensors"},{"key":"10.1016\/j.cviu.2022.103442_b44","doi-asserted-by":"crossref","unstructured":"Schindler,\u00a0Konrad, Gool,\u00a0Luc\u00a0van, 2008. Action snippets: How many frames does human action recognition require?. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition. pp. 1\u20138.","DOI":"10.1109\/CVPR.2008.4587730"},{"year":"2014","series-title":"Very deep convolutional networks for large-scale image recognition","author":"Simonyan","key":"10.1016\/j.cviu.2022.103442_b45"},{"issue":"1","key":"10.1016\/j.cviu.2022.103442_b46","doi-asserted-by":"crossref","first-page":"290","DOI":"10.1109\/JBHI.2014.2312180","article-title":"Fall detection in homes of older adults using the microsoft kinect","volume":"19","author":"Stone","year":"2014","journal-title":"IEEE J. Biomed. Health Inf."},{"key":"10.1016\/j.cviu.2022.103442_b47","unstructured":"Tsung-Yi,\u00a0Lin, Doll\u00e1r,\u00a0Piotr, Girshick,\u00a0Ross, He,\u00a0Kaiming, Hariharan,\u00a0Bharath, Belongie,\u00a0Serge, et al., 2017. Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 2117\u20132125."},{"issue":"11","key":"10.1016\/j.cviu.2022.103442_b48","doi-asserted-by":"crossref","first-page":"1473","DOI":"10.1109\/TCSVT.2008.2005594","article-title":"Machine recognition of human activities: A survey","volume":"18","author":"Turaga","year":"2008","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"10.1016\/j.cviu.2022.103442_b49","doi-asserted-by":"crossref","first-page":"71","DOI":"10.3389\/frobt.2020.00071","article-title":"Elderly fall detection systems: A literature survey","volume":"7","author":"Wang","year":"2020","journal-title":"Front. Robot. AI","ISSN":"http:\/\/id.crossref.org\/issn\/2296-9144","issn-type":"print"},{"key":"10.1016\/j.cviu.2022.103442_b50","series-title":"Neural Information Processing Systems Foundation","article-title":"Feature selection for SVMs","author":"Weston","year":"2000"},{"issue":"1","key":"10.1016\/j.cviu.2022.103442_b51","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.dcan.2015.12.001","article-title":"3D depth image analysis for indoor fall detection of elderly people","volume":"2","author":"Yang","year":"2016","journal-title":"Digit. Commun. Netw."},{"key":"10.1016\/j.cviu.2022.103442_b52","doi-asserted-by":"crossref","DOI":"10.1155\/2012\/625758","article-title":"Home and community environmental features, activity performance, and community participation among older adults with functional limitations","author":"Yang","year":"2012","journal-title":"J. Aging Res."},{"key":"10.1016\/j.cviu.2022.103442_b53","series-title":"2011 International Conference on Computer Vision","first-page":"1331","article-title":"Human action recognition by learning bases of action attributes and parts","author":"Yao","year":"2011"},{"issue":"4","key":"10.1016\/j.cviu.2022.103442_b54","doi-asserted-by":"crossref","first-page":"399","DOI":"10.1145\/954339.954342","article-title":"Face recognition: A literature survey","volume":"35","author":"Zhao","year":"2003","journal-title":"ACM Comput. Surv."},{"issue":"12","key":"10.1016\/j.cviu.2022.103442_b55","doi-asserted-by":"crossref","first-page":"2858","DOI":"10.1109\/TBME.2009.2030171","article-title":"A method for automatic fall detection of elderly people using floor vibrations and soundproof of concept on human mimicking doll falls","volume":"56","author":"Zigel","year":"2009","journal-title":"IEEE Trans. Biomed. Eng."}],"container-title":["Computer Vision and Image Understanding"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1077314222000595?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1077314222000595?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,3,27]],"date-time":"2023-03-27T15:16:25Z","timestamp":1679930185000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1077314222000595"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7]]},"references-count":55,"alternative-id":["S1077314222000595"],"URL":"https:\/\/doi.org\/10.1016\/j.cviu.2022.103442","relation":{},"ISSN":["1077-3142"],"issn-type":[{"type":"print","value":"1077-3142"}],"subject":[],"published":{"date-parts":[[2022,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Multi-human Fall Detection and Localization in Videos","name":"articletitle","label":"Article Title"},{"value":"Computer Vision and Image Understanding","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cviu.2022.103442","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"103442"}}