{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T19:10:07Z","timestamp":1728241807928},"reference-count":32,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,11,1]],"date-time":"2024-11-01T00:00:00Z","timestamp":1730419200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/100003187","name":"NSF","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100003187","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000001","name":"National Science Foundation","doi-asserted-by":"publisher","award":["DMS-2053697"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computational Statistics & Data Analysis"],"published-print":{"date-parts":[[2024,11]]},"DOI":"10.1016\/j.csda.2024.107998","type":"journal-article","created":{"date-parts":[[2024,6,12]],"date-time":"2024-06-12T19:04:38Z","timestamp":1718219078000},"page":"107998","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Conditional mean dimension reduction for tensor time series"],"prefix":"10.1016","volume":"199","author":[{"ORCID":"http:\/\/orcid.org\/0009-0006-1317-3922","authenticated-orcid":false,"given":"Chung Eun","family":"Lee","sequence":"first","affiliation":[]},{"given":"Xin","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.csda.2024.107998_br0010","doi-asserted-by":"crossref","first-page":"1203","DOI":"10.3982\/ECTA8968","article-title":"Eigenvalue ratio test for the number of factors","volume":"81","author":"Ahn","year":"2013","journal-title":"Econometrica"},{"author":"Chakraborty","key":"10.1016\/j.csda.2024.107998_br0020"},{"author":"Chang","key":"10.1016\/j.csda.2024.107998_br0030"},{"key":"10.1016\/j.csda.2024.107998_br0040","first-page":"1","article-title":"Statistical inference for high-dimensional matrix-variate factor models","author":"Chen","year":"2021","journal-title":"J. Am. Stat. Assoc."},{"key":"10.1016\/j.csda.2024.107998_br0050","doi-asserted-by":"crossref","first-page":"775","DOI":"10.1080\/01621459.2019.1584899","article-title":"Constrained factor models for high-dimensional matrix-variate time series","volume":"115","author":"Chen","year":"2020","journal-title":"J. Am. Stat. Assoc."},{"key":"10.1016\/j.csda.2024.107998_br0060","first-page":"1","article-title":"Factor models for high-dimensional tensor time series","author":"Chen","year":"2021","journal-title":"J. Am. Stat. Assoc."},{"year":"1998","series-title":"Regression Graphics: Ideas for Studying Regressions Through Graphics","author":"Cook","key":"10.1016\/j.csda.2024.107998_br0070"},{"key":"10.1016\/j.csda.2024.107998_br0080","first-page":"463","article-title":"Dimension folding pca and pfc for matrix-valued predictors","volume":"24","author":"Ding","year":"2014","journal-title":"Stat. Sin."},{"key":"10.1016\/j.csda.2024.107998_br0090","article-title":"A two-way transformed factor model for matrix-variate time series","author":"Gao","year":"2021","journal-title":"Econom. Stat."},{"author":"Han","key":"10.1016\/j.csda.2024.107998_br0100"},{"key":"10.1016\/j.csda.2024.107998_br0110","doi-asserted-by":"crossref","first-page":"455","DOI":"10.1137\/07070111X","article-title":"Tensor decompositions and applications","volume":"51","author":"Kolda","year":"2009","journal-title":"SIAM Rev."},{"key":"10.1016\/j.csda.2024.107998_br0120","first-page":"694","article-title":"Factor modeling for high-dimensional time series: inference for the number of factors","author":"Lam","year":"2012","journal-title":"Ann. Stat."},{"key":"10.1016\/j.csda.2024.107998_br0130","doi-asserted-by":"crossref","first-page":"901","DOI":"10.1093\/biomet\/asr048","article-title":"Estimation of latent factors for high-dimensional time series","volume":"98","author":"Lam","year":"2011","journal-title":"Biometrika"},{"key":"10.1016\/j.csda.2024.107998_br0140","doi-asserted-by":"crossref","first-page":"216","DOI":"10.1080\/01621459.2016.1240083","article-title":"Martingale difference divergence matrix and its application to dimension reduction for stationary multivariate time series","volume":"113","author":"Lee","year":"2018","journal-title":"J. Am. Stat. Assoc."},{"key":"10.1016\/j.csda.2024.107998_br0150","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1080\/07350015.2018.1458621","article-title":"Volatility martingale difference divergence matrix and its application to dimension reduction for multivariate volatility","volume":"38","author":"Lee","year":"2020","journal-title":"J. Bus. Econ. Stat."},{"year":"2023","series-title":"Mean dimension reduction and testing for nonparametric tensor response regression","author":"Lee","key":"10.1016\/j.csda.2024.107998_br0160"},{"key":"10.1016\/j.csda.2024.107998_br0170","doi-asserted-by":"crossref","first-page":"1094","DOI":"10.1214\/09-AOS737","article-title":"On dimension folding of matrix-or array-valued statistical objects","volume":"38","author":"Li","year":"2010","journal-title":"Ann. Stat."},{"key":"10.1016\/j.csda.2024.107998_br0180","doi-asserted-by":"crossref","first-page":"1131","DOI":"10.1080\/01621459.2016.1193022","article-title":"Parsimonious tensor response regression","volume":"112","author":"Li","year":"2017","journal-title":"J. Am. Stat. Assoc."},{"key":"10.1016\/j.csda.2024.107998_br0190","doi-asserted-by":"crossref","first-page":"3284","DOI":"10.1214\/12-AOP803","article-title":"Distance covariance in metric spaces","volume":"41","author":"Lyons","year":"2013","journal-title":"Ann. Probab."},{"key":"10.1016\/j.csda.2024.107998_br0200","doi-asserted-by":"crossref","first-page":"1450","DOI":"10.1198\/jasa.2011.tm10616","article-title":"Dynamic orthogonal components for multivariate time series","volume":"106","author":"Matteson","year":"2011","journal-title":"J. Am. Stat. Assoc."},{"key":"10.1016\/j.csda.2024.107998_br0210","doi-asserted-by":"crossref","first-page":"717","DOI":"10.1198\/jcgs.2009.08076","article-title":"Central mean subspace in time series","volume":"18","author":"Park","year":"2009","journal-title":"J. Comput. Graph. Stat."},{"key":"10.1016\/j.csda.2024.107998_br0220","first-page":"747","article-title":"Dimension reduction in time series","author":"Park","year":"2010","journal-title":"Stat. Sin."},{"key":"10.1016\/j.csda.2024.107998_br0230","series-title":"Proceedings of the 30th International Conference on Neural Information Processing Systems","first-page":"1875","article-title":"Low-rank regression with tensor responses","author":"Rabusseau","year":"2016"},{"key":"10.1016\/j.csda.2024.107998_br0240","doi-asserted-by":"crossref","first-page":"312","DOI":"10.1017\/S0266466610000253","article-title":"Testing for white noise under unknown dependence and its applications to diagnostic checking for time series models","volume":"27","author":"Shao","year":"2011","journal-title":"Econom. Theory"},{"key":"10.1016\/j.csda.2024.107998_br0250","doi-asserted-by":"crossref","first-page":"1302","DOI":"10.1080\/01621459.2014.887012","article-title":"Martingale difference correlation and its use in high-dimensional variable screening","volume":"109","author":"Shao","year":"2014","journal-title":"J. Am. Stat. Assoc."},{"key":"10.1016\/j.csda.2024.107998_br0260","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1002\/sam.11442","article-title":"Sufficient dimension folding in regression via distance covariance for matrix-valued predictors","volume":"13","author":"Sheng","year":"2020","journal-title":"Stat. Anal. Data Min. ASA Data Sci. J."},{"key":"10.1016\/j.csda.2024.107998_br0270","first-page":"4908","article-title":"Store: sparse tensor response regression and neuroimaging analysis","volume":"18","author":"Sun","year":"2017","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.csda.2024.107998_br0280","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1016\/j.jeconom.2018.09.013","article-title":"Factor models for matrix-valued high-dimensional time series","volume":"208","author":"Wang","year":"2019","journal-title":"J. Econom."},{"key":"10.1016\/j.csda.2024.107998_br0290","first-page":"2405","article-title":"Likelihood-based dimension folding on tensor data","volume":"32","author":"Wang","year":"2022","journal-title":"Stat. Sin."},{"key":"10.1016\/j.csda.2024.107998_br0300","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1016\/j.csda.2017.03.005","article-title":"Transformed contribution ratio test for the number of factors in static approximate factor models","volume":"112","author":"Xia","year":"2017","journal-title":"Comput. Stat. Data Anal."},{"key":"10.1016\/j.csda.2024.107998_br0310","first-page":"1025","article-title":"Consistently determining the number of factors in multivariate volatility modelling","author":"Xia","year":"2015","journal-title":"Stat. Sin."},{"key":"10.1016\/j.csda.2024.107998_br0320","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1080\/10485252.2021.1941951","article-title":"Modified martingale difference correlations","volume":"33","author":"Zhou","year":"2021","journal-title":"J. Nonparametr. Stat."}],"container-title":["Computational Statistics & Data Analysis"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167947324000823?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167947324000823?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T18:38:11Z","timestamp":1728239891000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167947324000823"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,11]]},"references-count":32,"alternative-id":["S0167947324000823"],"URL":"https:\/\/doi.org\/10.1016\/j.csda.2024.107998","relation":{},"ISSN":["0167-9473"],"issn-type":[{"type":"print","value":"0167-9473"}],"subject":[],"published":{"date-parts":[[2024,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Conditional mean dimension reduction for tensor time series","name":"articletitle","label":"Article Title"},{"value":"Computational Statistics & Data Analysis","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.csda.2024.107998","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"107998"}}