{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,18]],"date-time":"2024-09-18T02:10:40Z","timestamp":1726625440877},"reference-count":36,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computational Statistics & Data Analysis"],"published-print":{"date-parts":[[2022,6]]},"DOI":"10.1016\/j.csda.2022.107447","type":"journal-article","created":{"date-parts":[[2022,2,7]],"date-time":"2022-02-07T17:30:23Z","timestamp":1644255023000},"page":"107447","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["Dealing with overdispersion in multivariate count data"],"prefix":"10.1016","volume":"170","author":[{"given":"Noemi","family":"Corsini","sequence":"first","affiliation":[]},{"given":"Cinzia","family":"Viroli","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.csda.2022.107447_br0110","doi-asserted-by":"crossref","first-page":"834","DOI":"10.1111\/biom.13194","article-title":"Estimating overdispersion in sparse multinomial data","volume":"76","author":"Afroz","year":"2020","journal-title":"Biometrics"},{"issue":"6","key":"10.1016\/j.csda.2022.107447_br0320","doi-asserted-by":"crossref","first-page":"716","DOI":"10.1109\/TAC.1974.1100705","article-title":"A new look at the statistical model identification","volume":"19","author":"Akaike","year":"1974","journal-title":"IEEE Trans. Autom. Control"},{"issue":"1","key":"10.1016\/j.csda.2022.107447_br0120","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1007\/s11222-015-9616-z","article-title":"New improved estimators for overdispersion in models with clustered multinomial data and unequal cluster sizes","volume":"27","author":"Alonso-Revenga","year":"2017","journal-title":"Stat. Comput."},{"issue":"12","key":"10.1016\/j.csda.2022.107447_br0260","doi-asserted-by":"crossref","first-page":"1","DOI":"10.18637\/jss.v046.i12","article-title":"Multivariate generalizations of the multiplicative binomial distribution: introducing the MM package","volume":"46","author":"Altham","year":"2012","journal-title":"J. Stat. Softw."},{"key":"10.1016\/j.csda.2022.107447_br0010","first-page":"125","article-title":"Semiparametric count data modeling with an application to health service demand","volume":"8","author":"Bach","year":"2018","journal-title":"Econom. Stat."},{"issue":"3","key":"10.1016\/j.csda.2022.107447_br0180","doi-asserted-by":"crossref","first-page":"723","DOI":"10.1093\/biomet\/86.3.723","article-title":"An extension of Morel-Nagaraj's finite mixture distribution for modelling multinomial clustered data","volume":"86","author":"Banerjee","year":"1999","journal-title":"Biometrika"},{"issue":"1","key":"10.1016\/j.csda.2022.107447_br0330","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1007\/s00440-006-0011-8","article-title":"Minimal penalties for Gaussian model selection","volume":"138","author":"Birg\u00e9","year":"2007","journal-title":"Probab. Theory Relat. Fields"},{"issue":"1","key":"10.1016\/j.csda.2022.107447_br0210","doi-asserted-by":"crossref","first-page":"596","DOI":"10.1111\/coin.12429","article-title":"Mixture-based clustering for count data using approximated Fisher scoring and minorization-maximization approaches","volume":"37","author":"Bregu","year":"2021","journal-title":"Comput. Intell."},{"issue":"325","key":"10.1016\/j.csda.2022.107447_br0240","doi-asserted-by":"crossref","first-page":"194","DOI":"10.1080\/01621459.1969.10500963","article-title":"Concepts of independence for proportions with a generalization of the Dirichlet distribution","volume":"64","author":"Connor","year":"1969","journal-title":"J. Am. Stat. Assoc."},{"issue":"1","key":"10.1016\/j.csda.2022.107447_br0300","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1111\/j.2517-6161.1977.tb01600.x","article-title":"Maximum likelihood from incomplete data via the EM algorithm","volume":"39","author":"Dempster","year":"1977","journal-title":"J. R. Stat. Soc., Ser. B, Methodol."},{"key":"10.1016\/j.csda.2022.107447_br0080","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.jspi.2017.09.005","article-title":"Analysis of multinomial counts with joint zero-inflation, with an application to health economics","volume":"194","author":"Diallo","year":"2018","journal-title":"J. Stat. Plan. Inference"},{"issue":"395","key":"10.1016\/j.csda.2022.107447_br0030","doi-asserted-by":"crossref","first-page":"709","DOI":"10.1080\/01621459.1986.10478327","article-title":"Double exponential families and their use in generalized linear regression","volume":"81","author":"Efron","year":"1986","journal-title":"J. Am. Stat. Assoc."},{"issue":"4","key":"10.1016\/j.csda.2022.107447_br0070","doi-asserted-by":"crossref","first-page":"1030","DOI":"10.1111\/j.0006-341X.2000.01030.x","article-title":"Zero-inflated Poisson and binomial regression with random effects: a case study","volume":"56","author":"Hall","year":"2000","journal-title":"Biometrics"},{"issue":"1","key":"10.1016\/j.csda.2022.107447_br0060","doi-asserted-by":"crossref","first-page":"1","DOI":"10.2307\/1269547","article-title":"Zero-inflated Poisson regression, with an application to defects in manufacturing","volume":"34","author":"Lambert","year":"1992","journal-title":"Technometrics"},{"key":"10.1016\/j.csda.2022.107447_br0340","doi-asserted-by":"crossref","first-page":"320","DOI":"10.1051\/ps\/2010002","article-title":"Data-driven penalty calibration: a case study for Gaussian mixture model selection","volume":"15","author":"Maugis","year":"2011","journal-title":"ESAIM Probab. Stat."},{"issue":"2","key":"10.1016\/j.csda.2022.107447_br0100","doi-asserted-by":"crossref","first-page":"403","DOI":"10.1080\/03610919908813556","article-title":"A covariance matrix that accounts for different degrees of extraneous variation in multinomial responses","volume":"28","author":"Morel","year":"1999","journal-title":"Commun. Stat., Simul. Comput."},{"issue":"2","key":"10.1016\/j.csda.2022.107447_br0170","doi-asserted-by":"crossref","first-page":"363","DOI":"10.1093\/biomet\/80.2.363","article-title":"A finite mixture distribution for modelling multinomial extra variation","volume":"80","author":"Morel","year":"1993","journal-title":"Biometrika"},{"key":"10.1016\/j.csda.2022.107447_br0250","doi-asserted-by":"crossref","DOI":"10.1016\/j.jmva.2020.104651","article-title":"A Conway-Maxwell-multinomial distribution for flexible modeling of clustered categorical data","volume":"179","author":"Morris","year":"2020","journal-title":"J. Multivar. Anal."},{"issue":"1\/2","key":"10.1016\/j.csda.2022.107447_br0130","doi-asserted-by":"crossref","first-page":"65","DOI":"10.2307\/2333468","article-title":"On the compound multinomial distribution, the multivariate \u03b2-distribution, and correlations among proportions","volume":"49","author":"Mosimann","year":"1962","journal-title":"Biometrika"},{"year":"2015","series-title":"Automated Data Collection with R: A Practical Guide to Web Scraping and Text Mining","author":"Munzert","key":"10.1016\/j.csda.2022.107447_br0040"},{"issue":"1","key":"10.1016\/j.csda.2022.107447_br0190","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1016\/j.csda.2004.05.007","article-title":"An improved method for the computation of maximum likelihood estimates for multinomial overdispersion models","volume":"49","author":"Neerchal","year":"2005","journal-title":"Comput. Stat. Data Anal."},{"issue":"1","key":"10.1016\/j.csda.2022.107447_br0280","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s40488-021-00125-0","article-title":"Approximations of conditional probability density functions in Lebesgue spaces via mixture of experts models","volume":"8","author":"Nguyen","year":"2021","journal-title":"J. Stat. Distrib. Appl."},{"issue":"1","key":"10.1016\/j.csda.2022.107447_br0290","doi-asserted-by":"crossref","DOI":"10.1080\/25742558.2020.1750861","article-title":"Approximation by finite mixtures of continuous density functions that vanish at infinity","volume":"7","author":"Nguyen","year":"2020","journal-title":"Cogent Math. Stat."},{"issue":"4","key":"10.1016\/j.csda.2022.107447_br0160","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1016\/S0167-7152(03)00048-8","article-title":"A bivariate beta distribution","volume":"62","author":"Olkin","year":"2003","journal-title":"Stat. Probab. Lett."},{"issue":"1","key":"10.1016\/j.csda.2022.107447_br0020","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1111\/1467-9574.00094","article-title":"On modelling overdispersion of counts","volume":"53","author":"Poortema","year":"1999","journal-title":"Stat. Neerl."},{"key":"10.1016\/j.csda.2022.107447_br0200","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.stamet.2013.10.002","article-title":"On the method of approximate Fisher scoring for finite mixtures of multinomials","volume":"18","author":"Raim","year":"2014","journal-title":"Stat. Methodol."},{"key":"10.1016\/j.csda.2022.107447_br0140","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.neunet.2014.09.003","article-title":"Deep learning in neural networks: an overview","volume":"61","author":"Schmidhuber","year":"2015","journal-title":"Neural Netw."},{"issue":"2","key":"10.1016\/j.csda.2022.107447_br0310","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1214\/aos\/1176344136","article-title":"Estimating the dimension of a model","volume":"6","author":"Schwarz","year":"1978","journal-title":"Ann. Stat."},{"issue":"4","key":"10.1016\/j.csda.2022.107447_br0150","doi-asserted-by":"crossref","first-page":"846","DOI":"10.1080\/03610911003650375","article-title":"A new multinomial model and a zero variance estimation","volume":"39","author":"Valle","year":"2010","journal-title":"Commun. Stat., Simul. Comput."},{"issue":"3","key":"10.1016\/j.csda.2022.107447_br0270","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s11222-020-09989-9","article-title":"Deep mixtures of unigrams for uncovering topics in textual data","volume":"31","author":"Viroli","year":"2021","journal-title":"Stat. Comput."},{"key":"10.1016\/j.csda.2022.107447_br0050","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1038\/nrg2484","article-title":"RNA-Seq: a revolutionary tool for transcriptomics","volume":"10","author":"Wang","year":"2009","journal-title":"Nat. Rev. Genet."},{"issue":"1","key":"10.1016\/j.csda.2022.107447_br0350","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/1741-7007-8-58","article-title":"Ultra-high throughput sequencing-based small RNA discovery and discrete statistical biomarker analysis in a collection of cervical tumours and matched controls","volume":"8","author":"Witten","year":"2010","journal-title":"BMC Biol."},{"issue":"4","key":"10.1016\/j.csda.2022.107447_br0360","doi-asserted-by":"crossref","first-page":"2493","DOI":"10.1214\/11-AOAS493","article-title":"Classification and clustering of sequencing data using a Poisson model","volume":"5","author":"Witten","year":"2011","journal-title":"Ann. Appl. Stat."},{"issue":"2","key":"10.1016\/j.csda.2022.107447_br0090","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1111\/j.1467-842X.1995.tb00655.x","article-title":"Comparison of quasi-likelihood models for overdispersion","volume":"37","author":"Yanez","year":"1995","journal-title":"Aust. J. Stat."},{"author":"Zhang","key":"10.1016\/j.csda.2022.107447_br0230"},{"issue":"1","key":"10.1016\/j.csda.2022.107447_br0220","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1080\/10618600.2016.1154063","article-title":"Regression models for multivariate count data","volume":"26","author":"Zhang","year":"2017","journal-title":"J. Comput. Graph. Stat."}],"container-title":["Computational Statistics & Data Analysis"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167947322000275?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167947322000275?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,9,18]],"date-time":"2024-09-18T01:39:41Z","timestamp":1726623581000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167947322000275"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6]]},"references-count":36,"alternative-id":["S0167947322000275"],"URL":"https:\/\/doi.org\/10.1016\/j.csda.2022.107447","relation":{},"ISSN":["0167-9473"],"issn-type":[{"type":"print","value":"0167-9473"}],"subject":[],"published":{"date-parts":[[2022,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Dealing with overdispersion in multivariate count data","name":"articletitle","label":"Article Title"},{"value":"Computational Statistics & Data Analysis","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.csda.2022.107447","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107447"}}