{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,11]],"date-time":"2024-08-11T22:35:12Z","timestamp":1723415712587},"reference-count":30,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,8,1]],"date-time":"2020-08-01T00:00:00Z","timestamp":1596240000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computational Statistics & Data Analysis"],"published-print":{"date-parts":[[2020,8]]},"DOI":"10.1016\/j.csda.2020.106955","type":"journal-article","created":{"date-parts":[[2020,3,23]],"date-time":"2020-03-23T16:08:17Z","timestamp":1584979697000},"page":"106955","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["A simple test for zero multiple correlation coefficient in high-dimensional normal data using random projection"],"prefix":"10.1016","volume":"148","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4214-3969","authenticated-orcid":false,"given":"Dariush","family":"Najarzadeh","sequence":"first","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.csda.2020.106955_b1","series-title":"Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems","first-page":"274","article-title":"Database-friendly random projections","author":"Achlioptas","year":"2001"},{"year":"2003","series-title":"An Introduction to Multivariate Statistical Analysis","author":"Anderson","key":"10.1016\/j.csda.2020.106955_b2"},{"issue":"2","key":"10.1016\/j.csda.2020.106955_b3","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1007\/s10994-006-6265-7","article-title":"An algorithmic theory of learning: robust concepts and random projection","volume":"63","author":"Arriaga","year":"2006","journal-title":"Mach. Learn."},{"issue":"2","key":"10.1016\/j.csda.2020.106955_b4","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1016\/S0167-9473(02)00283-9","article-title":"Computing discrete mixtures of continuous distributions: noncentral chisquare, noncentral t and the distribution of the square of the sample multiple correlation coefficient","volume":"43","author":"Benton","year":"2003","journal-title":"Comput. Statist. Data Anal."},{"year":"2002","series-title":"Statistical Inference","author":"Casella","key":"10.1016\/j.csda.2020.106955_b5"},{"issue":"1","key":"10.1016\/j.csda.2020.106955_b6","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1002\/rsa.10073","article-title":"An elementary proof of a theorem of Johnson and Lindenstrauss","volume":"22","author":"Dasgupta","year":"2003","journal-title":"Random Struct. Algorithms"},{"issue":"4","key":"10.1016\/j.csda.2020.106955_b7","doi-asserted-by":"crossref","first-page":"345","DOI":"10.1016\/0167-9473(96)00002-3","article-title":"On the computation of the distribution of the square of the sample multiple correlation coefficient","volume":"22","author":"Ding","year":"1996","journal-title":"Comput. Statist. Data Anal."},{"issue":"788","key":"10.1016\/j.csda.2020.106955_b8","doi-asserted-by":"crossref","first-page":"654","DOI":"10.1098\/rspa.1928.0224","article-title":"The general sampling distribution of the multiple correlation coefficient","volume":"121","author":"Fisher","year":"1928","journal-title":"Proc. Roy. Soc. Lond. Ser. A"},{"issue":"1","key":"10.1016\/j.csda.2020.106955_b9","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1016\/0047-259X(77)90033-1","article-title":"Tests on multiple correlation coefficient and multiple partial correlation coefficient","volume":"7","author":"Gupta","year":"1977","journal-title":"J. Multivariate Anal."},{"issue":"2","key":"10.1016\/j.csda.2020.106955_b10","doi-asserted-by":"crossref","first-page":"276","DOI":"10.1111\/j.2517-6161.1968.tb00726.x","article-title":"A relatively simple form of the distribution of the multiple correlation coefficient","volume":"30","author":"Gurland","year":"1968","journal-title":"J. R. Stat. Soc. Ser. B Stat. Methodol."},{"key":"10.1016\/j.csda.2020.106955_b11","series-title":"Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing","first-page":"604","article-title":"Approximate nearest neighbors: towards removing the curse of dimensionality","author":"Indyk","year":"1998"},{"issue":"1","key":"10.1016\/j.csda.2020.106955_b12","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1090\/conm\/026\/737400","article-title":"Extensions of Lipschitz mappings into a Hilbert space","volume":"26","author":"Johnson","year":"1984","journal-title":"Contemp. Math."},{"issue":"2","key":"10.1016\/j.csda.2020.106955_b13","doi-asserted-by":"crossref","first-page":"134","DOI":"10.3103\/S106653071702003X","article-title":"A unified approach to estimation of noncentrality parameters, the multiple correlation coefficient, and mixture models","volume":"26","author":"Kubokawa","year":"2017","journal-title":"Math. Methods Statist."},{"issue":"1","key":"10.1016\/j.csda.2020.106955_b14","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1111\/j.2517-6161.1971.tb00863.x","article-title":"Some results on the sampling distribution of the multiple correlation coefficient","volume":"33","author":"Lee","year":"1971","journal-title":"J. R. Stat. Soc. Ser. B Stat. Methodol."},{"year":"2007","series-title":"Nonlinear Imensionality Reduction","author":"Lee","key":"10.1016\/j.csda.2020.106955_b15"},{"year":"2006","series-title":"Sub-gaussian random projections","author":"Li","key":"10.1016\/j.csda.2020.106955_b16"},{"issue":"11","key":"10.1016\/j.csda.2020.106955_b17","doi-asserted-by":"crossref","first-page":"3883","DOI":"10.1016\/j.csda.2009.04.016","article-title":"A generalized Shapiro\u2013Wilk W statistic for testing high-dimensional normality","volume":"53","author":"Liang","year":"2009","journal-title":"Comput. Statist. Data Anal."},{"key":"10.1016\/j.csda.2020.106955_b18","series-title":"Advances in Neural Information Processing Systems","first-page":"1206","article-title":"A more powerful two-sample test in high dimensions using random projection","author":"Lopes","year":"2011"},{"year":"2008","series-title":"A Primer on Linear Models","author":"Monahan","key":"10.1016\/j.csda.2020.106955_b19"},{"year":"2005","series-title":"Aspects of multivariate statistical theory","author":"Muirhead","key":"10.1016\/j.csda.2020.106955_b20"},{"issue":"3","key":"10.1016\/j.csda.2020.106955_b21","doi-asserted-by":"crossref","first-page":"679","DOI":"10.1081\/STA-200052122","article-title":"Series representation of non null distribution of the square of sample multiple correlation coefficient by use of the Mellin integral transform","volume":"34","author":"Nandi","year":"2005","journal-title":"Comm. Statist. Theory Methods"},{"issue":"1","key":"10.1016\/j.csda.2020.106955_b22","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1080\/03610910500416207","article-title":"Asymptotic expansion and conditional robustness for the sample multiple correlation coefficient under nonnormality","volume":"35","author":"Ogasawara","year":"2006","journal-title":"Comm. Statist. Simulation Comput."},{"key":"10.1016\/j.csda.2020.106955_b23","series-title":"Advances in the Statistical Sciences: Foundations of Statistical Inference","first-page":"149","article-title":"Testing for the nullity of the multiple correlation coefficient with incomplete multivariate data","author":"Provost","year":"1987"},{"year":"2003","series-title":"Mathematical Statistics","author":"Shao","key":"10.1016\/j.csda.2020.106955_b24"},{"issue":"1","key":"10.1016\/j.csda.2020.106955_b25","doi-asserted-by":"crossref","first-page":"164","DOI":"10.1016\/j.jmva.2004.02.014","article-title":"Testing multivariate normality in incomplete data of small sample size","volume":"93","author":"Tan","year":"2005","journal-title":"J. Multivariate Anal."},{"key":"10.1016\/j.csda.2020.106955_b26","series-title":"The Random Projection Method","volume":"vol. 65","author":"Vempala","year":"2004"},{"year":"2012","series-title":"Geometric Structure of High-dimensional Data and Dimensionality Reduction","author":"Wang","key":"10.1016\/j.csda.2020.106955_b27"},{"issue":"3","key":"10.1016\/j.csda.2020.106955_b28","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1214\/aoms\/1177732886","article-title":"On the sampling distribution of the multiple correlation coefficient","volume":"3","author":"Wilks","year":"1932","journal-title":"Ann. Math. Stat."},{"issue":"15","key":"10.1016\/j.csda.2020.106955_b29","doi-asserted-by":"crossref","first-page":"1413","DOI":"10.1080\/03610927808827723","article-title":"A simple derivation of the distribution of the multiple correlation coefficient","volume":"7","author":"Williams","year":"1978","journal-title":"Comm. Statist. Theory Methods"},{"issue":"3","key":"10.1016\/j.csda.2020.106955_b30","doi-asserted-by":"crossref","first-page":"748","DOI":"10.1093\/biomet\/asu023","article-title":"Inference on multiple correlation coefficients with moderately high dimensional data","volume":"101","author":"Zheng","year":"2014","journal-title":"Biometrika"}],"container-title":["Computational Statistics & Data Analysis"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167947320300463?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167947320300463?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,8,2]],"date-time":"2024-08-02T19:26:06Z","timestamp":1722626766000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167947320300463"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,8]]},"references-count":30,"alternative-id":["S0167947320300463"],"URL":"https:\/\/doi.org\/10.1016\/j.csda.2020.106955","relation":{},"ISSN":["0167-9473"],"issn-type":[{"type":"print","value":"0167-9473"}],"subject":[],"published":{"date-parts":[[2020,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A simple test for zero multiple correlation coefficient in high-dimensional normal data using random projection","name":"articletitle","label":"Article Title"},{"value":"Computational Statistics & Data Analysis","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.csda.2020.106955","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"106955"}}