{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T04:12:16Z","timestamp":1740111136284,"version":"3.37.3"},"reference-count":36,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,2,1]],"date-time":"2020-02-01T00:00:00Z","timestamp":1580515200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["71331006, 71931004"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["91546202"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computational Statistics & Data Analysis"],"published-print":{"date-parts":[[2020,2]]},"DOI":"10.1016\/j.csda.2019.106826","type":"journal-article","created":{"date-parts":[[2019,8,13]],"date-time":"2019-08-13T15:26:12Z","timestamp":1565709972000},"page":"106826","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["Semiparametric model of mean residual life with biased sampling data"],"prefix":"10.1016","volume":"142","author":[{"given":"Huijuan","family":"Ma","sequence":"first","affiliation":[]},{"given":"Wei","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Yong","family":"Zhou","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.csda.2019.106826_b1","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1007\/s10985-006-9012-2","article-title":"A formal test for stationary of the incidence rate using data from a prevalent cohort study with follow-up","volume":"12","author":"Addona","year":"2006","journal-title":"Lifetime Data Anal."},{"key":"10.1016\/j.csda.2019.106826_b2","doi-asserted-by":"crossref","first-page":"1100","DOI":"10.1214\/aos\/1176345976","article-title":"Cox\u2019s regression model for counting processes: a large sample study","author":"Andersen","year":"1982","journal-title":"The Annals of Statistics"},{"key":"10.1016\/j.csda.2019.106826_b3","doi-asserted-by":"crossref","DOI":"10.5705\/ss.2013.117","article-title":"Semiparametric inference for the proportional mean residual life model with right-censored length-biased data","author":"Bai","year":"2016","journal-title":"Statist. Sinica"},{"issue":"4","key":"10.1016\/j.csda.2019.106826_b4","doi-asserted-by":"crossref","first-page":"995","DOI":"10.1093\/biomet\/ass049","article-title":"Proportional mean residual life model for right-censored length-biased data","volume":"99","author":"Chan","year":"2012","journal-title":"Biometrika"},{"issue":"477","key":"10.1016\/j.csda.2019.106826_b5","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1198\/016214506000000870","article-title":"Additive expectancy regression","volume":"102","author":"Chen","year":"2007","journal-title":"J. Amer. Statist. Assoc."},{"issue":"1","key":"10.1016\/j.csda.2019.106826_b6","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1093\/biomet\/92.1.19","article-title":"Semiparametric regression analysis of mean residual life with censored survival data","volume":"92","author":"Chen","year":"2005","journal-title":"Biometrika"},{"issue":"2","key":"10.1016\/j.csda.2019.106826_b7","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1093\/biomet\/93.2.303","article-title":"Linear life expectancy regression with censored data","volume":"93","author":"Chen","year":"2006","journal-title":"Biometrika"},{"key":"10.1016\/j.csda.2019.106826_b8","doi-asserted-by":"crossref","first-page":"170","DOI":"10.1111\/j.0006-341X.2005.030224.x","article-title":"Semiparametric estimation of proportional mean residual life model in presence of censoring","volume":"61","author":"Chen","year":"2005","journal-title":"Biometrics"},{"key":"10.1016\/j.csda.2019.106826_b9","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1093\/biostatistics\/kxr017","article-title":"Checking semiparametric transformation models with censored data","volume":"13","author":"Chen","year":"2012","journal-title":"Biostatistics"},{"issue":"3","key":"10.1016\/j.csda.2019.106826_b10","doi-asserted-by":"crossref","first-page":"443","DOI":"10.1007\/s10255-012-0157-3","article-title":"Quantile regression for right-censored and length-biased data","volume":"28","author":"Chen","year":"2012","journal-title":"Acta Math. Appl. Sin. Engl. Ser."},{"key":"10.1016\/j.csda.2019.106826_b11","doi-asserted-by":"crossref","first-page":"608","DOI":"10.1111\/biom.12170","article-title":"Combined estimating equation approaches for semiparametric transformation models with length-biased survival data","volume":"70","author":"Cheng","year":"2014","journal-title":"Biometrics"},{"year":"1991","series-title":"Counting Processes and Survival Analysis","author":"Fleming","key":"10.1016\/j.csda.2019.106826_b12"},{"issue":"1","key":"10.1016\/j.csda.2019.106826_b13","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1093\/biomet\/asq069","article-title":"Nonparametric estimation for length-biased and right-censored data","volume":"98","author":"Huang","year":"2011","journal-title":"Biometrika"},{"key":"10.1016\/j.csda.2019.106826_b14","series-title":"Biostatistics Casebook","first-page":"31","article-title":"Testing survival with incomplete observations tasks","author":"Hyde","year":"1980"},{"key":"10.1016\/j.csda.2019.106826_b15","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1080\/01621459.2012.746073","article-title":"A unified approach to semiparametric transformation models under general biased sampling schemes","volume":"108","author":"Kim","year":"2013","journal-title":"J. Amer. Statist. Assoc."},{"key":"10.1016\/j.csda.2019.106826_b16","doi-asserted-by":"crossref","first-page":"685","DOI":"10.1007\/s11425-015-0383-5","article-title":"Analyzing the general biased data by additive risk model","volume":"60","author":"Li","year":"2017","journal-title":"Science China Mathematics"},{"issue":"1","key":"10.1016\/j.csda.2019.106826_b17","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1093\/biomet\/73.1.13","article-title":"Longitudinal data analysis using generalized linear models","volume":"73","author":"Liang","year":"1986","journal-title":"Biometrika"},{"issue":"4","key":"10.1016\/j.csda.2019.106826_b18","doi-asserted-by":"crossref","first-page":"470","DOI":"10.1007\/s10985-012-9225-5","article-title":"Imputation for semiparametric transformation models with biased-sampling data","volume":"18","author":"Liu","year":"2012","journal-title":"Lifetime Data Anal."},{"key":"10.1016\/j.csda.2019.106826_b19","doi-asserted-by":"crossref","first-page":"873","DOI":"10.1093\/biomet\/asp064","article-title":"Nonparametric estimation for right-censored length-biased data: a pseudo-partial likelihood approach","volume":"96","author":"Luo","year":"2009","journal-title":"Biometrika"},{"key":"10.1016\/j.csda.2019.106826_b20","doi-asserted-by":"crossref","first-page":"213","DOI":"10.4310\/SII.2016.v9.n2.a8","article-title":"Semiparametric transformation models with length-biased and right-censored data under the case-cohort design","volume":"9","author":"Ma","year":"2016","journal-title":"Stat. Interface"},{"key":"10.1016\/j.csda.2019.106826_b21","doi-asserted-by":"crossref","first-page":"21","DOI":"10.4310\/SII.2019.v12.n1.a3","article-title":"Proportional mean residual life model with censored survival data under case-cohort design","volume":"12","author":"Ma","year":"2019","journal-title":"Stat. Interface"},{"key":"10.1016\/j.csda.2019.106826_b22","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1016\/j.spl.2014.08.021","article-title":"Composite estimating equation approach for additive risk model with length-biased and right-censored data","volume":"96","author":"Ma","year":"2015","journal-title":"Statist. Probab. Lett."},{"key":"10.1016\/j.csda.2019.106826_b23","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1080\/03610926.2014.983613","article-title":"Pseudo likelihood for case-cohort studies under length-biased sampling","volume":"46","author":"Ma","year":"2017","journal-title":"Communications in Statistics-Theory and Methods"},{"issue":"3","key":"10.1016\/j.csda.2019.106826_b24","doi-asserted-by":"crossref","first-page":"477","DOI":"10.1111\/j.2517-6161.1994.tb01994.x","article-title":"Estimation in the mean residual life regression model","volume":"56","author":"Maguluri","year":"1994","journal-title":"J. R. Stat. Soc. Ser. B Stat. Methodol."},{"issue":"5","key":"10.1016\/j.csda.2019.106826_b25","doi-asserted-by":"crossref","first-page":"609","DOI":"10.1111\/j.1467-9868.2010.00742.x","article-title":"Non-parametric tests for right-censored data with biased sampling","volume":"72","author":"Ning","year":"2010","journal-title":"J. R. Stat. Soc. Ser. B Stat. Methodol."},{"issue":"2","key":"10.1016\/j.csda.2019.106826_b26","doi-asserted-by":"crossref","first-page":"409","DOI":"10.1093\/biomet\/77.2.409","article-title":"A note on residual life","volume":"77","author":"Oakes","year":"1990","journal-title":"Biometrika"},{"key":"10.1016\/j.csda.2019.106826_b27","series-title":"NSF-CBMS Regional Conference Series in Probability and Statistics","doi-asserted-by":"crossref","DOI":"10.1214\/cbms\/1462061091","article-title":"Empirical processes: theory and applications","author":"Pollard","year":"1990"},{"key":"10.1016\/j.csda.2019.106826_b28","series-title":"International Series in Pure & Applied Mathematics","article-title":"Principles of Mathematical Analysis","author":"Rudin","year":"1976"},{"issue":"3","key":"10.1016\/j.csda.2019.106826_b29","doi-asserted-by":"crossref","first-page":"521","DOI":"10.1007\/s00180-010-0223-3","article-title":"Semiparametric analysis of transformation models with left-truncated and right-censored data","volume":"26","author":"Shen","year":"2011","journal-title":"Comput. Statist."},{"key":"10.1016\/j.csda.2019.106826_b30","doi-asserted-by":"crossref","first-page":"1192","DOI":"10.1198\/jasa.2009.tm08614","article-title":"Analyzing length-biased data with semiparametric transformation and accelerated failure time models","volume":"104","author":"Shen","year":"2009","journal-title":"J. Amer. Statist. Assoc."},{"key":"10.1016\/j.csda.2019.106826_b31","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1016\/j.spl.2017.10.020","article-title":"The nonparametric quantile estimation for length-biased and right-censored data","volume":"134","author":"Shi","year":"2018","journal-title":"Statist. Probab. Lett."},{"issue":"1","key":"10.1016\/j.csda.2019.106826_b32","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1093\/biomet\/asr065","article-title":"Mean residual life models with time-dependent coefficients under right censoring","volume":"99","author":"Sun","year":"2012","journal-title":"Biometrika"},{"issue":"486","key":"10.1016\/j.csda.2019.106826_b33","doi-asserted-by":"crossref","first-page":"803","DOI":"10.1198\/jasa.2009.0130","article-title":"A class of transformed mean residual life models with censored survival data","volume":"104","author":"Sun","year":"2009","journal-title":"J. Amer. Statist. Assoc."},{"key":"10.1016\/j.csda.2019.106826_b34","doi-asserted-by":"crossref","first-page":"601","DOI":"10.1093\/biomet\/asp026","article-title":"Pseudo-partial likelihood for proportional hazards models with biased-sampling data","volume":"96","author":"Tsai","year":"2009","journal-title":"Biometrika"},{"year":"1996","series-title":"Weak Convergence and Empirical Processes: With Applications to Statistics","author":"Vaart","key":"10.1016\/j.csda.2019.106826_b35"},{"issue":"3","key":"10.1016\/j.csda.2019.106826_b36","doi-asserted-by":"crossref","first-page":"627","DOI":"10.1093\/biomet\/93.3.627","article-title":"Efficient estimation of semiparametric transformation models for counting processes","volume":"93","author":"Zeng","year":"2006","journal-title":"Biometrika"}],"container-title":["Computational Statistics & Data Analysis"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167947319301732?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167947319301732?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,7,21]],"date-time":"2024-07-21T23:44:58Z","timestamp":1721605498000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167947319301732"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,2]]},"references-count":36,"alternative-id":["S0167947319301732"],"URL":"https:\/\/doi.org\/10.1016\/j.csda.2019.106826","relation":{},"ISSN":["0167-9473"],"issn-type":[{"type":"print","value":"0167-9473"}],"subject":[],"published":{"date-parts":[[2020,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Semiparametric model of mean residual life with biased sampling data","name":"articletitle","label":"Article Title"},{"value":"Computational Statistics & Data Analysis","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.csda.2019.106826","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"106826"}}