{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T04:12:15Z","timestamp":1740111135932,"version":"3.37.3"},"reference-count":35,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,9,1]],"date-time":"2019-09-01T00:00:00Z","timestamp":1567296000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100008784","name":"Universidad de las Fuerzas Armadas ESPE","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100008784","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003329","name":"MINECO, Spain","doi-asserted-by":"publisher","award":["MTM2014-52876-R","MTM2017-82724-R"],"id":[{"id":"10.13039\/501100003329","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100010801","name":"Xunta de Galicia, Spain","doi-asserted-by":"publisher","award":["ED431C-2016-015"],"id":[{"id":"10.13039\/501100010801","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Centro Singular de Investigaci\u00f3n de Galicia, Spain","award":["ED431G\/01"]},{"name":"Spanish National Research and Development Program project","award":["TEC2015-65353-R"]},{"DOI":"10.13039\/501100006762","name":"AtlantTIC (Atlantic Research Center for Information and Communication Technologies), Spain","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100006762","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computational Statistics & Data Analysis"],"published-print":{"date-parts":[[2019,9]]},"DOI":"10.1016\/j.csda.2019.01.017","type":"journal-article","created":{"date-parts":[[2019,2,11]],"date-time":"2019-02-11T11:23:59Z","timestamp":1549884239000},"page":"1-15","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":7,"special_numbering":"C","title":["A nonparametric bootstrap method for spatial data"],"prefix":"10.1016","volume":"137","author":[{"given":"Sergio","family":"Castillo-P\u00e1ez","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5785-3739","authenticated-orcid":false,"given":"Rub\u00e9n","family":"Fern\u00e1ndez-Casal","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-4542-6630","authenticated-orcid":false,"given":"Pilar","family":"Garc\u00eda-Soid\u00e1n","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"year":"1964","series-title":"Handbook of Mathematical Functions: With Formulas, Graphs and Mathematical Tables","author":"Abramowitz","key":"10.1016\/j.csda.2019.01.017_b1"},{"key":"10.1016\/j.csda.2019.01.017_b2","unstructured":"Ardia, D., Mullen, K.M., Peterson, B.G., Ulrich, J., 2016. DEoptim: Differential Evolution in R. R package version 2.2-4. URL https:\/\/CRAN.R-project.org\/package=DEoptim."},{"issue":"1","key":"10.1016\/j.csda.2019.01.017_b3","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1007\/BF02595864","article-title":"An overview of bootstrap methods for estimating and predicting in time series","volume":"8","author":"Cao","year":"1999","journal-title":"Test"},{"issue":"4","key":"10.1016\/j.csda.2019.01.017_b4","doi-asserted-by":"crossref","first-page":"1906","DOI":"10.1214\/aos\/1176348377","article-title":"Comparison of two bandwidth selectors with dependent errors","volume":"19","author":"Chu","year":"1991","journal-title":"Ann. Statist."},{"issue":"2","key":"10.1016\/j.csda.2019.01.017_b5","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1007\/s11004-010-9314-5","article-title":"Robust resampling confidence intervals for empirical variograms","volume":"43","author":"Clark","year":"2011","journal-title":"Math. Geosci."},{"issue":"5","key":"10.1016\/j.csda.2019.01.017_b6","doi-asserted-by":"crossref","first-page":"563","DOI":"10.1007\/BF01032109","article-title":"Fitting variogram models by weighted least squares","volume":"17","author":"Cressie","year":"1985","journal-title":"Math. Geol."},{"year":"1993","series-title":"Statistics for Spatial Data","author":"Cressie","key":"10.1016\/j.csda.2019.01.017_b7"},{"year":"1997","series-title":"Bootstrap Methods and Their Application","author":"Davison","key":"10.1016\/j.csda.2019.01.017_b8"},{"year":"1994","series-title":"An Introduction to the Bootstrap","author":"Efron","key":"10.1016\/j.csda.2019.01.017_b9"},{"year":"1996","series-title":"Local Polynomial Modelling and Its Applications","author":"Fan","key":"10.1016\/j.csda.2019.01.017_b10"},{"key":"10.1016\/j.csda.2019.01.017_b11","unstructured":"Fern\u00e1ndez-Casal, R., 2018. npsp: Nonparametric Spatial Statistics. R package version 0.7-1. URL http:\/\/github.com\/rubenfcasal\/npsp."},{"issue":"5","key":"10.1016\/j.csda.2019.01.017_b12","doi-asserted-by":"crossref","first-page":"1247","DOI":"10.1007\/s00477-013-0817-8","article-title":"Nonparametric bias-corrected variogram estimation under non-constant trend","volume":"28","author":"Fern\u00e1ndez-Casal","year":"2014","journal-title":"Stoch. Environ. Res. Risk A"},{"issue":"2","key":"10.1016\/j.csda.2019.01.017_b13","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1002\/cjs.5550330208","article-title":"Smoothing parameter selection methods for nonparametric regression with spatially correlated errors","volume":"33","author":"Francisco-Fern\u00e1ndez","year":"2005","journal-title":"Can. J. Stat."},{"issue":"2","key":"10.1016\/j.csda.2019.01.017_b14","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1016\/S0167-7152(03)00149-4","article-title":"Local linear regression estimation of the variogram","volume":"64","author":"Garc\u00eda-Soid\u00e1n","year":"2003","journal-title":"Statist. Probab. Lett."},{"issue":"5","key":"10.1016\/j.csda.2019.01.017_b15","doi-asserted-by":"crossref","first-page":"1207","DOI":"10.1007\/s00477-013-0808-9","article-title":"Bootstrap approaches for spatial data","volume":"28","author":"Garc\u00eda-Soid\u00e1n","year":"2014","journal-title":"Stoch. Environ. Res. Risk A"},{"issue":"4","key":"10.1016\/j.csda.2019.01.017_b16","doi-asserted-by":"crossref","first-page":"383","DOI":"10.1016\/j.jkss.2011.07.003","article-title":"Discussion: Bootstrap methods for dependent data: A review","volume":"40","author":"Goncalves","year":"2011","journal-title":"J. Korean Stat. Soc."},{"issue":"2","key":"10.1016\/j.csda.2019.01.017_b17","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1023\/B:STCO.0000021408.63640.d8","article-title":"On the discretization of nonparametric isotropic covariogram estimators","volume":"14","author":"Gorsich","year":"2004","journal-title":"Stat. Comput."},{"issue":"3","key":"10.1016\/j.csda.2019.01.017_b18","doi-asserted-by":"crossref","first-page":"561","DOI":"10.1093\/biomet\/82.3.561","article-title":"On blocking rules for the bootstrap with dependent data","volume":"82","author":"Hall","year":"1995","journal-title":"Biometrika"},{"issue":"1","key":"10.1016\/j.csda.2019.01.017_b19","doi-asserted-by":"crossref","first-page":"578","DOI":"10.1016\/j.csda.2010.05.031","article-title":"A comparison of block and semi-parametric bootstrap methods for variance estimation in spatial statistics","volume":"55","author":"Iranpanah","year":"2011","journal-title":"Comput. Statist. Data Anal."},{"year":"1978","series-title":"Mining Geostatistics","author":"Journel","key":"10.1016\/j.csda.2019.01.017_b20"},{"issue":"4","key":"10.1016\/j.csda.2019.01.017_b21","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1016\/j.jkss.2011.08.009","article-title":"Bootstrap methods for dependent data: A review","volume":"40","author":"Kreiss","year":"2011","journal-title":"J. Korean Stat. Soc."},{"year":"2003","series-title":"Resampling Methods for Dependent Data","author":"Lahiri","key":"10.1016\/j.csda.2019.01.017_b22"},{"key":"10.1016\/j.csda.2019.01.017_b23","series-title":"Exploring the Limits of Bootstrap","first-page":"225","article-title":"Moving blocks jackknife and bootstrap capture weak dependence","author":"Liu","year":"1992"},{"year":"1962","series-title":"Trait\u00c9 de G\u00c9ostatistique Appliqu\u00c9e I","author":"Matheron","key":"10.1016\/j.csda.2019.01.017_b24"},{"issue":"5","key":"10.1016\/j.csda.2019.01.017_b25","doi-asserted-by":"crossref","first-page":"499","DOI":"10.1007\/BF01886329","article-title":"Analysis of nonintrinsic spatial variability by residual kriging with application to regional groundwater levels","volume":"16","author":"Neuman","year":"1984","journal-title":"Math. Geol."},{"issue":"3","key":"10.1016\/j.csda.2019.01.017_b26","first-page":"468","article-title":"Optimal block size of variance estimation by a spatial block bootstrap method","volume":"69","author":"Nordman","year":"2007","journal-title":"Sankhya"},{"issue":"2","key":"10.1016\/j.csda.2019.01.017_b27","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1007\/s11004-010-9269-6","article-title":"Generalized bootstrap method for assessment of uncertainty in semivariogram inference","volume":"43","author":"Olea","year":"2011","journal-title":"Math. Geosci."},{"issue":"2","key":"10.1016\/j.csda.2019.01.017_b28","doi-asserted-by":"crossref","first-page":"134","DOI":"10.1214\/ss\/1009213287","article-title":"Nonparametric regression with correlated errors","volume":"16","author":"Opsomer","year":"2001","journal-title":"Stat. Sci."},{"key":"10.1016\/j.csda.2019.01.017_b29","doi-asserted-by":"crossref","first-page":"188","DOI":"10.1016\/j.cageo.2011.09.002","article-title":"Varboot: A spatial bootstrap program for semivariogram uncertainty assessment","volume":"41","author":"Pardo-Ig\u00fazquiza","year":"2012","journal-title":"Comput. Geosci."},{"issue":"428","key":"10.1016\/j.csda.2019.01.017_b30","doi-asserted-by":"crossref","first-page":"1303","DOI":"10.1080\/01621459.1994.10476870","article-title":"The stationary bootstrap","volume":"89","author":"Politis","year":"1994","journal-title":"J. A. Stat. Assoc."},{"key":"10.1016\/j.csda.2019.01.017_b31","unstructured":"R\u00a0Core\u00a0Team, ., 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https:\/\/www.R-project.org\/."},{"issue":"8","key":"10.1016\/j.csda.2019.01.017_b32","doi-asserted-by":"crossref","first-page":"985","DOI":"10.1007\/s11004-010-9302-9","article-title":"Kriging prediction intervals based on semiparametric bootstrap","volume":"42","author":"Schelin","year":"2010","journal-title":"Math. Geosci."},{"issue":"1","key":"10.1016\/j.csda.2019.01.017_b33","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/0167-9473(91)90055-7","article-title":"Variogram fitting with a general class of conditionally nonnegative definite functions","volume":"11","author":"Shapiro","year":"1991","journal-title":"Comput. Statist. Data Anal."},{"issue":"7","key":"10.1016\/j.csda.2019.01.017_b34","doi-asserted-by":"crossref","first-page":"769","DOI":"10.1007\/BF01031616","article-title":"Bootstrapping correlated data","volume":"17","author":"Solow","year":"1985","journal-title":"J. Int. Ass. Math. Geol."},{"issue":"3","key":"10.1016\/j.csda.2019.01.017_b35","doi-asserted-by":"crossref","first-page":"296","DOI":"10.1198\/1085711031661","article-title":"Incorporating parameter uncertainty into prediction intervals for spatial data modeled via a parametric variogram","volume":"8","author":"Wang","year":"2003","journal-title":"J. Agric. Biol. Environ. Stat."}],"container-title":["Computational Statistics & Data Analysis"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167947319300325?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167947319300325?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,8,7]],"date-time":"2019-08-07T15:40:13Z","timestamp":1565192413000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167947319300325"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,9]]},"references-count":35,"alternative-id":["S0167947319300325"],"URL":"https:\/\/doi.org\/10.1016\/j.csda.2019.01.017","relation":{},"ISSN":["0167-9473"],"issn-type":[{"type":"print","value":"0167-9473"}],"subject":[],"published":{"date-parts":[[2019,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A nonparametric bootstrap method for spatial data","name":"articletitle","label":"Article Title"},{"value":"Computational Statistics & Data Analysis","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.csda.2019.01.017","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}