{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,24]],"date-time":"2025-03-24T08:09:18Z","timestamp":1742803758173,"version":"3.37.3"},"reference-count":105,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,4,1]],"date-time":"2019-04-01T00:00:00Z","timestamp":1554076800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"Ontario Graduate Scholarship, Canada"},{"DOI":"10.13039\/100013873","name":"Government of Ontario, Canada","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100013873","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100000038","name":"Natural Sciences and Engineering Research Council of Canada","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100000038","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001804","name":"Canada Research Chairs program","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001804","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computational Statistics & Data Analysis"],"published-print":{"date-parts":[[2019,4]]},"DOI":"10.1016\/j.csda.2018.12.001","type":"journal-article","created":{"date-parts":[[2018,12,24]],"date-time":"2018-12-24T02:27:48Z","timestamp":1545618468000},"page":"145-166","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":25,"special_numbering":"C","title":["Asymmetric clusters and outliers: Mixtures of multivariate contaminated shifted asymmetric Laplace distributions"],"prefix":"10.1016","volume":"132","author":[{"given":"Katherine","family":"Morris","sequence":"first","affiliation":[]},{"given":"Antonio","family":"Punzo","sequence":"additional","affiliation":[]},{"given":"Paul D.","family":"McNicholas","sequence":"additional","affiliation":[]},{"given":"Ryan P.","family":"Browne","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"year":"2011","series-title":"Analise do perfil do cliente recheio e desenvolvimento de um sistema promocional","author":"Abreu","key":"10.1016\/j.csda.2018.12.001_b1"},{"key":"10.1016\/j.csda.2018.12.001_b2","doi-asserted-by":"crossref","unstructured":"Aitken, A.C., 1926. On Bernoulli\u2019s numerical solution of algebraic equations. In: Proceedings of the Royal Society of Edinburgh, vol. 46, pp. 289\u2013305.","DOI":"10.1017\/S0370164600022070"},{"issue":"3","key":"10.1016\/j.csda.2018.12.001_b3","doi-asserted-by":"crossref","first-page":"325","DOI":"10.1080\/00401706.1980.10486163","article-title":"Mixture models, outliers, and the EM algorithm","volume":"22","author":"Aitkin","year":"1980","journal-title":"Technometrics"},{"issue":"4","key":"10.1016\/j.csda.2018.12.001_b4","doi-asserted-by":"crossref","first-page":"589","DOI":"10.1111\/j.1540-6261.1968.tb00843.x","article-title":"Financial ratios, discriminant analysis and the prediction of corporate bankruptcy","volume":"23","author":"Altman","year":"1968","journal-title":"J. Finance"},{"issue":"3","key":"10.1016\/j.csda.2018.12.001_b5","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1007\/s11222-010-9175-2","article-title":"Extending mixtures of multivariate t-factor analyzers","volume":"21","author":"Andrews","year":"2011","journal-title":"Stat. Comput."},{"issue":"5","key":"10.1016\/j.csda.2018.12.001_b6","doi-asserted-by":"crossref","first-page":"1021","DOI":"10.1007\/s11222-011-9272-x","article-title":"Model-based clustering, classification, and discriminant analysis via mixtures of multivariate t-distributions: the teigen family","volume":"22","author":"Andrews","year":"2012","journal-title":"Stat. Comput."},{"issue":"2","key":"10.1016\/j.csda.2018.12.001_b7","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1111\/j.1467-9469.2005.00426.x","article-title":"The skew-normal distribution and related multivariate families","volume":"32","author":"Azzalini","year":"2005","journal-title":"Scand. J. Stat."},{"key":"10.1016\/j.csda.2018.12.001_b8","article-title":"The skew-normal and related families","volume":"vol. 3","author":"Azzalini","year":"2014"},{"issue":"4","key":"10.1016\/j.csda.2018.12.001_b9","doi-asserted-by":"crossref","first-page":"1571","DOI":"10.1007\/s00180-012-0367-4","article-title":"Finite mixtures of unimodal beta and gamma densities and the k-bumps algorithm","volume":"28","author":"Bagnato","year":"2013","journal-title":"Comput. Stat."},{"issue":"1","key":"10.1016\/j.csda.2018.12.001_b10","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1002\/cjs.11308","article-title":"The multivariate leptokurtic-normal distribution and its application in model-based clustering","volume":"45","author":"Bagnato","year":"2017","journal-title":"Canad. J. Statist."},{"issue":"3","key":"10.1016\/j.csda.2018.12.001_b11","doi-asserted-by":"crossref","first-page":"803","DOI":"10.2307\/2532201","article-title":"Model-Based Gaussian and Non-Gaussian Clustering","volume":"49","author":"Banfield","year":"1993","journal-title":"Biometrics"},{"issue":"12","key":"10.1016\/j.csda.2018.12.001_b12","doi-asserted-by":"crossref","first-page":"2926","DOI":"10.1016\/j.csda.2009.09.031","article-title":"Robust mixture modeling based on scale mixtures of skew-normal distributions","volume":"54","author":"Basso","year":"2010","journal-title":"Comput. Statist. Data Anal."},{"issue":"2","key":"10.1016\/j.csda.2018.12.001_b13","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1214\/aos\/1176349933","article-title":"Robust Bayes and empirical Bayes analysis with \u03b5-contaminated priors","volume":"14","author":"Berger","year":"1986","journal-title":"Ann. Statist."},{"issue":"1","key":"10.1016\/j.csda.2018.12.001_b14","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1177\/0049124188017001003","article-title":"Estimation of contamination parameters and identification of outliers in multivariate data","volume":"17","author":"Berkane","year":"1988","journal-title":"Sociol. Methods Res."},{"issue":"3\u20134","key":"10.1016\/j.csda.2018.12.001_b15","doi-asserted-by":"crossref","first-page":"561","DOI":"10.1016\/S0167-9473(02)00163-9","article-title":"Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models","volume":"41","author":"Biernacki","year":"2003","journal-title":"Comput. Statist. Data Anal."},{"issue":"2","key":"10.1016\/j.csda.2018.12.001_b16","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1007\/BF01720593","article-title":"The distribution of the likelihood ratio for mixtures of densities from the one-parameter exponential family","volume":"46","author":"B\u00f6hning","year":"1994","journal-title":"Ann. Inst. Statist. Math."},{"key":"10.1016\/j.csda.2018.12.001_b17","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1038\/301115a0","article-title":"Bimodal Grain Size Distribution and Secondary Thickening in Air-Fall Ash Layers","volume":"301","author":"Brazier","year":"1983","journal-title":"Nature"},{"issue":"2","key":"10.1016\/j.csda.2018.12.001_b18","doi-asserted-by":"crossref","first-page":"176","DOI":"10.1002\/cjs.11246","article-title":"A mixture of generalized hyperbolic distributions","volume":"43","author":"Browne","year":"2015","journal-title":"Canad. J. Statist."},{"key":"10.1016\/j.csda.2018.12.001_b19","doi-asserted-by":"crossref","first-page":"126","DOI":"10.1016\/j.csda.2011.06.026","article-title":"Multivariate mixture modelling using skew-normal independent distributions","volume":"56","author":"Cabral","year":"2012","journal-title":"Comput. Statist. Data Anal."},{"issue":"5","key":"10.1016\/j.csda.2018.12.001_b20","doi-asserted-by":"crossref","first-page":"781","DOI":"10.1016\/0031-3203(94)00125-6","article-title":"Gaussian parsimonious clustering models","volume":"28","author":"Celeux","year":"1995","journal-title":"Pattern Recognit."},{"issue":"4","key":"10.1016\/j.csda.2018.12.001_b21","doi-asserted-by":"crossref","first-page":"1081","DOI":"10.1111\/biom.12351","article-title":"Mixtures of multivariate power exponential distributions","volume":"71","author":"Dang","year":"2015","journal-title":"Biometrics"},{"issue":"1","key":"10.1016\/j.csda.2018.12.001_b22","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1007\/s00357-017-9221-2","article-title":"Multivariate response and parsimony for Gaussian cluster-weighted models","volume":"34","author":"Dang","year":"2017","journal-title":"J. Classification"},{"issue":"441","key":"10.1016\/j.csda.2018.12.001_b23","doi-asserted-by":"crossref","first-page":"294","DOI":"10.1080\/01621459.1998.10474110","article-title":"Detecting features in spatial point processes with clutter via model-based clustering","volume":"93","author":"Dasgupta","year":"1998","journal-title":"J. Amer. Statist. Assoc."},{"key":"10.1016\/j.csda.2018.12.001_b24","series-title":"Probability and Mathematical Statistics","article-title":"Unimodality, convexity, and applications","author":"Dharmadhikari","year":"1988"},{"issue":"458","key":"10.1016\/j.csda.2018.12.001_b25","doi-asserted-by":"crossref","first-page":"611","DOI":"10.1198\/016214502760047131","article-title":"Model-based clustering, discriminant analysis, and density estimation","volume":"97","author":"Fraley","year":"2002","journal-title":"J. Amer. Statist. Assoc."},{"year":"2014","series-title":"Mixtures of shifted asymmetric Laplace distributions","author":"Franczak","key":"10.1016\/j.csda.2018.12.001_b26"},{"issue":"6","key":"10.1016\/j.csda.2018.12.001_b27","doi-asserted-by":"crossref","first-page":"1149","DOI":"10.1109\/TPAMI.2013.216","article-title":"Mixtures of shifted asymmetric Laplace distributions","volume":"36","author":"Franczak","year":"2014","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.csda.2018.12.001_b28","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1016\/j.patcog.2018.02.025","article-title":"Finite mixtures of skewed matrix variate distributions","volume":"80","author":"Gallaugher","year":"2018","journal-title":"Pattern Recognit."},{"issue":"3","key":"10.1016\/j.csda.2018.12.001_b29","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/j.spl.2018.08.012","article-title":"Three skewed matrix variate distributions","volume":"145","author":"Gallaugher","year":"2019","journal-title":"Statist. Probab. Lett."},{"issue":"2","key":"10.1016\/j.csda.2018.12.001_b30","first-page":"164","article-title":"Trimmed ML estimation of contaminated mixtures","volume":"71","author":"Gallegos","year":"2009","journal-title":"Sankhy\u0101"},{"issue":"4","key":"10.1016\/j.csda.2018.12.001_b31","doi-asserted-by":"crossref","first-page":"1461","DOI":"10.2307\/2533276","article-title":"Analysis of tomato root initiation using a normal mixture distribution","volume":"51","author":"Gutierrez","year":"1995","journal-title":"Biometrics"},{"key":"10.1016\/j.csda.2018.12.001_b32","unstructured":"Hall, B., Hall, M., 2017. LaplacesDemon: complete environment for Bayesian inference. Version 16.1.0."},{"issue":"1","key":"10.1016\/j.csda.2018.12.001_b33","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1007\/BF01908075","article-title":"Comparing partitions","volume":"2","author":"Hubert","year":"1985","journal-title":"J. Classification"},{"issue":"1","key":"10.1016\/j.csda.2018.12.001_b34","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1007\/s11222-008-9072-0","article-title":"Model-based clustering with non-elliptically contoured distributions","volume":"19","author":"Karlis","year":"2009","journal-title":"Stat. Comput."},{"issue":"3\u20134","key":"10.1016\/j.csda.2018.12.001_b35","doi-asserted-by":"crossref","first-page":"577","DOI":"10.1016\/S0167-9473(02)00177-9","article-title":"Choosing initial values for the EM algorithm for finite mixtures","volume":"41","author":"Karlis","year":"2003","journal-title":"Comput. Statist. Data Anal."},{"key":"10.1016\/j.csda.2018.12.001_b36","doi-asserted-by":"crossref","first-page":"773","DOI":"10.1080\/01621459.1995.10476572","article-title":"Bayes factors","volume":"90","author":"Kass","year":"1995","journal-title":"J. Amer. Statist. Assoc."},{"issue":"1","key":"10.1016\/j.csda.2018.12.001_b37","first-page":"49","article-title":"Consistent estimation of the order of mixture models","volume":"62","author":"Keribin","year":"2000","journal-title":"Sankhy\u0101"},{"year":"2012","series-title":"The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance","author":"Kotz","key":"10.1016\/j.csda.2018.12.001_b38"},{"issue":"1","key":"10.1016\/j.csda.2018.12.001_b39","first-page":"303","article-title":"Likelihood based inference for skew-normal independent linear mixed models","volume":"20","author":"Lachos","year":"2010","journal-title":"Statist. Sinica"},{"issue":"56","key":"10.1016\/j.csda.2018.12.001_b40","first-page":"11","article-title":"Multivariate skew-normal\/independent distributions: properties and inference","volume":"28","author":"Lachos","year":"2014","journal-title":"Pro Mathematica"},{"issue":"2","key":"10.1016\/j.csda.2018.12.001_b41","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1007\/s11222-012-9362-4","article-title":"Finite mixtures of multivariate skew t-distributions: some recent and new results","volume":"24","author":"Lee","year":"2014","journal-title":"Stat. Comput."},{"issue":"2","key":"10.1016\/j.csda.2018.12.001_b42","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1016\/j.jmva.2008.04.010","article-title":"Maximum likelihood estimation for multivariate skew normal mixture models","volume":"100","author":"Lin","year":"2009","journal-title":"J. Multivariate Anal."},{"key":"10.1016\/j.csda.2018.12.001_b43","doi-asserted-by":"crossref","first-page":"343","DOI":"10.1007\/s11222-009-9128-9","article-title":"Robust mixture modeling using multivariate skew t-distributions","volume":"20","author":"Lin","year":"2010","journal-title":"Stat. Comput."},{"key":"10.1016\/j.csda.2018.12.001_b44","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1016\/j.csda.2013.02.020","article-title":"Learning from incomplete data via parameterized t mixture models through eigenvalue decomposition","volume":"71","author":"Lin","year":"2014","journal-title":"Comput. Statist. Data Anal."},{"issue":"3","key":"10.1016\/j.csda.2018.12.001_b45","doi-asserted-by":"crossref","first-page":"375","DOI":"10.1007\/s00180-008-0129-5","article-title":"Computationally efficient learning of multivariate t mixture models with missing information","volume":"24","author":"Lin","year":"2009","journal-title":"Comput. Stat."},{"issue":"6","key":"10.1016\/j.csda.2018.12.001_b46","doi-asserted-by":"crossref","first-page":"1177","DOI":"10.1016\/j.patcog.2005.12.014","article-title":"On fast supervised learning for normal mixture models with missing information","volume":"39","author":"Lin","year":"2006","journal-title":"Pattern Recognit."},{"issue":"3","key":"10.1016\/j.csda.2018.12.001_b47","first-page":"909","article-title":"Finite mixture modelling using the skew normal distribution","volume":"17","author":"Lin","year":"2007","journal-title":"Statist. Sinica"},{"issue":"1","key":"10.1016\/j.csda.2018.12.001_b48","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1177\/1471082X17718119","article-title":"Robust mixtures of factor analysis models using the restricted multivariate skew-t distribution","volume":"18","author":"Lin","year":"2018","journal-title":"Stat. Model."},{"issue":"1","key":"10.1016\/j.csda.2018.12.001_b49","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1007\/s11222-010-9204-1","article-title":"Flexible mixture modeling via the multivariate t distribution with the Box-Cox transformation: an alternative to the skew-t distribution","volume":"22","author":"Lo","year":"2012","journal-title":"Stat. Comput."},{"key":"10.1016\/j.csda.2018.12.001_b50","doi-asserted-by":"crossref","first-page":"475","DOI":"10.1016\/j.csda.2016.05.024","article-title":"Model-based time-varying clustering of multivariate longitudinal data with covariates and outliers","volume":"113","author":"Maruotti","year":"2017","journal-title":"Comput. Statist. Data Anal."},{"key":"10.1016\/j.csda.2018.12.001_b51","article-title":"Mixtures of multivariate contaminated normal regression models","author":"Mazza","year":"2018","journal-title":"Statist. Papers"},{"key":"10.1016\/j.csda.2018.12.001_b52","series-title":"Mixture Models - Inference and Applications to Clustering","first-page":"254","author":"McLachlan","year":"1988"},{"issue":"11","key":"10.1016\/j.csda.2018.12.001_b53","doi-asserted-by":"crossref","first-page":"5327","DOI":"10.1016\/j.csda.2006.09.015","article-title":"Extension of the mixture of factor analyzers model to incorporate the multivariate t-distribution","volume":"51","author":"McLachlan","year":"2007","journal-title":"Comput. Statist. Data Anal."},{"article-title":"The EM algorithm and extensions","year":"2008","author":"McLachlan","key":"10.1016\/j.csda.2018.12.001_b54"},{"key":"10.1016\/j.csda.2018.12.001_b55","series-title":"Finite Mixture Models","first-page":"419","author":"McLachlan","year":"2000"},{"issue":"3\u20134","key":"10.1016\/j.csda.2018.12.001_b56","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1016\/S0167-9473(02)00183-4","article-title":"Modelling high-dimensional data by mixtures of factor analyzers","volume":"41","author":"McLachlan","year":"2003","journal-title":"Comput. Statist. Data Anal."},{"year":"2016","series-title":"Mixture model-based classification","author":"McNicholas","key":"10.1016\/j.csda.2018.12.001_b57"},{"issue":"3","key":"10.1016\/j.csda.2018.12.001_b58","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1007\/s00357-016-9211-9","article-title":"Model-Based clustering","volume":"33","author":"McNicholas","year":"2016","journal-title":"J. Classification"},{"key":"10.1016\/j.csda.2018.12.001_b59","series-title":"Big and Complex Data Analysis: Methodologies and Applications","first-page":"369","article-title":"A mixture of variance-gamma factor analyzers","author":"McNicholas","year":"2017"},{"key":"10.1016\/j.csda.2018.12.001_b60","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1007\/s11222-008-9056-0","article-title":"Parsimonious Gaussian mixture models","volume":"18","author":"McNicholas","year":"2008","journal-title":"Stat. Comput."},{"issue":"3","key":"10.1016\/j.csda.2018.12.001_b61","doi-asserted-by":"crossref","first-page":"711","DOI":"10.1016\/j.csda.2009.02.011","article-title":"Serial and parallel implementations of model-based clustering via parsimonious Gaussian mixture models","volume":"54","author":"McNicholas","year":"2010","journal-title":"Comput. Statist. Data Anal."},{"issue":"6","key":"10.1016\/j.csda.2018.12.001_b62","doi-asserted-by":"crossref","first-page":"1381","DOI":"10.1016\/j.csda.2011.11.002","article-title":"Initializing the em algorithm in Gaussian mixture models with an unknown number of components","volume":"56","author":"Melnykov","year":"2012","journal-title":"Comput. Statist. Data Anal."},{"issue":"2","key":"10.1016\/j.csda.2018.12.001_b63","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1093\/biomet\/80.2.267","article-title":"Maximum likelihood estimation via the ECM algorithm: A general framework","volume":"80","author":"Meng","year":"1993","journal-title":"Biometrika"},{"issue":"4","key":"10.1016\/j.csda.2018.12.001_b64","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1016\/0021-9681(64)90073-6","article-title":"One Cause? Many Causes? The Argument from the Bimodal Distribution","volume":"17","author":"Murphy","year":"1964","journal-title":"J. Chronic Dis."},{"key":"10.1016\/j.csda.2018.12.001_b65","doi-asserted-by":"crossref","first-page":"326","DOI":"10.1016\/j.csda.2014.03.012","article-title":"Mixtures of skew-t factor analyzers","volume":"77","author":"Murray","year":"2014","journal-title":"Comput. Statist. Data Anal."},{"key":"10.1016\/j.csda.2018.12.001_b66","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/j.jmva.2017.07.008","article-title":"Hidden truncation hyperbolic distributions, finite mixtures thereof, and their application for clustering","volume":"161","author":"Murray","year":"2017","journal-title":"J. Multivariate Anal."},{"issue":"160\u2013168","key":"10.1016\/j.csda.2018.12.001_b67","article-title":"A mixture of SDB skew-t factor analyzers","volume":"3","author":"Murray","year":"2017","journal-title":"Econom. Stat."},{"key":"10.1016\/j.csda.2018.12.001_b68","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.csda.2014.09.006","article-title":"Clustering with the multivariate normal inverse Gaussian distribution","volume":"93","author":"O\u2019Hagan","year":"2016","journal-title":"Comput. Statist. Data Anal."},{"issue":"4","key":"10.1016\/j.csda.2018.12.001_b69","doi-asserted-by":"crossref","first-page":"339","DOI":"10.1023\/A:1008981510081","article-title":"Robust mixture modelling using the t distribution","volume":"10","author":"Peel","year":"2000","journal-title":"Stat. Comput."},{"issue":"12","key":"10.1016\/j.csda.2018.12.001_b70","doi-asserted-by":"crossref","first-page":"1","DOI":"10.18637\/jss.v054.i12","article-title":"mixsmsn: fitting finite mixture of scale mixture of skew-normal distributions","volume":"54","author":"Prates","year":"2013","journal-title":"J. Stat. Softw."},{"key":"10.1016\/j.csda.2018.12.001_b71","doi-asserted-by":"crossref","DOI":"10.1080\/02664763.2018.1542668","article-title":"A new look at the inverse Gaussian distribution with applications to insurance and economic data","author":"Punzo","year":"2018","journal-title":"J. Appl. Stat."},{"issue":"4","key":"10.1016\/j.csda.2018.12.001_b72","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/j.insmatheco.2017.10.007","article-title":"Compound unimodal distributions for insurance losses","volume":"81","author":"Punzo","year":"2018","journal-title":"Insurance Math. Econom."},{"issue":"14","key":"10.1016\/j.csda.2018.12.001_b73","doi-asserted-by":"crossref","first-page":"2797","DOI":"10.1080\/00949655.2015.1131282","article-title":"Hypothesis testing for mixture model selection","volume":"86","author":"Punzo","year":"2016","journal-title":"J. Stat. Comput. Simul."},{"issue":"4","key":"10.1016\/j.csda.2018.12.001_b74","doi-asserted-by":"crossref","first-page":"1097","DOI":"10.1080\/10618600.2015.1089776","article-title":"Clustering multivariate longitudinal observations: the contaminated Gaussian hidden Markov model","volume":"25","author":"Punzo","year":"2016","journal-title":"J. Comput. Graph. Statist."},{"issue":"14","key":"10.1016\/j.csda.2018.12.001_b75","doi-asserted-by":"crossref","first-page":"2563","DOI":"10.1080\/02664763.2018.1428288","article-title":"Fitting insurance and economic data with outliers: a flexible approach based on finite mixtures of contaminated gamma distributions","volume":"45","author":"Punzo","year":"2018","journal-title":"J. Appl. Stat."},{"key":"10.1016\/j.csda.2018.12.001_b76","unstructured":"Punzo, A., Mazza, A., McNicholas, P.D., 2017. ContaminatedMixt: model-based clustering and classification with the multivariate contaminated normal distribution. Version 1.1."},{"issue":"10","key":"10.1016\/j.csda.2018.12.001_b77","doi-asserted-by":"crossref","first-page":"1","DOI":"10.18637\/jss.v085.i10","article-title":"ContaminatedMixt: an R package for fitting parsimonious mixtures of multivariate contaminated normal distributions","volume":"85","author":"Punzo","year":"2018","journal-title":"J. Stat. Softw."},{"year":"2014","series-title":"Robust high-dimensional modeling with the contaminated Gaussian distribution","author":"Punzo","key":"10.1016\/j.csda.2018.12.001_b78"},{"issue":"6","key":"10.1016\/j.csda.2018.12.001_b79","doi-asserted-by":"crossref","first-page":"1506","DOI":"10.1002\/bimj.201500144","article-title":"Parsimonious mixtures of multivariate contaminated normal distributions","volume":"58","author":"Punzo","year":"2016","journal-title":"Biom. J."},{"issue":"2","key":"10.1016\/j.csda.2018.12.001_b80","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1007\/s00357-017-9234-x","article-title":"Robust clustering in regression analysis via the contaminated Gaussian cluster-weighted model","volume":"34","author":"Punzo","year":"2017","journal-title":"J. Classification"},{"issue":"21","key":"10.1016\/j.csda.2018.12.001_b81","doi-asserted-by":"crossref","first-page":"8519","DOI":"10.1073\/pnas.0903028106","article-title":"Automated high-dimensional flow cytometric data analysis","volume":"106","author":"Pyne","year":"2009","journal-title":"Proc. Natl. Acad. Sci."},{"year":"2017","series-title":"R: A Language and Environment for Statistical Computing","key":"10.1016\/j.csda.2018.12.001_b82"},{"key":"10.1016\/j.csda.2018.12.001_b83","doi-asserted-by":"crossref","first-page":"111","DOI":"10.2307\/271063","article-title":"Bayesian model selection in social research","volume":"25","author":"Raftery","year":"1995","journal-title":"Sociol. Methodol."},{"issue":"336","key":"10.1016\/j.csda.2018.12.001_b84","doi-asserted-by":"crossref","first-page":"846","DOI":"10.1080\/01621459.1971.10482356","article-title":"Objective criteria for the evaluation of clustering methods","volume":"66","author":"Rand","year":"1971","journal-title":"J. Amer. Statist. Assoc."},{"issue":"2","key":"10.1016\/j.csda.2018.12.001_b85","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1007\/s11634-012-0107-1","article-title":"The influence function of the tclust robust clustering procedure","volume":"6","author":"Ruwet","year":"2012","journal-title":"Adv. Data Anal. Classif."},{"issue":"11","key":"10.1016\/j.csda.2018.12.001_b86","doi-asserted-by":"crossref","first-page":"3951","DOI":"10.1080\/03610928808829848","article-title":"Skewness and mixtures of normal distributions","volume":"17","author":"Schork","year":"1988","journal-title":"Comm. Statist. Theory Methods"},{"issue":"2","key":"10.1016\/j.csda.2018.12.001_b87","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1214\/aos\/1176344136","article-title":"Estimating the dimension of a model","volume":"6","author":"Schwarz","year":"1978","journal-title":"Ann. Statist."},{"issue":"1","key":"10.1016\/j.csda.2018.12.001_b88","doi-asserted-by":"crossref","first-page":"289","DOI":"10.32614\/RJ-2016-021","article-title":"mclust 5: clustering, classification and density estimation using Gaussian finite mixture models","volume":"8","author":"Scrucca","year":"2016","journal-title":"R J."},{"issue":"2","key":"10.1016\/j.csda.2018.12.001_b89","doi-asserted-by":"crossref","first-page":"154","DOI":"10.1016\/j.stamet.2010.09.001","article-title":"Skew scale mixtures of normal distributions: properties and estimation","volume":"8","author":"da\u00a0Silva\u00a0Ferreira","year":"2011","journal-title":"Stat. Methodol."},{"issue":"3","key":"10.1016\/j.csda.2018.12.001_b90","doi-asserted-by":"crossref","first-page":"386","DOI":"10.1037\/1082-989X.9.3.386","article-title":"Properties of the Hubert-Arable adjusted Rand index","volume":"9","author":"Steinley","year":"2004","journal-title":"Psychol. Methods"},{"issue":"2","key":"10.1016\/j.csda.2018.12.001_b91","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1007\/s11634-014-0165-7","article-title":"Variational Bayes approximations for clustering via mixtures of normal inverse Gaussian distributions","volume":"8","author":"Subedi","year":"2014","journal-title":"Adv. Data Anal. Classif."},{"issue":"1","key":"10.1016\/j.csda.2018.12.001_b92","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1007\/s11634-013-0124-8","article-title":"Clustering and classification via cluster-weighted factor analyzers","volume":"7","author":"Subedi","year":"2013","journal-title":"Adv. Data Anal. Classif."},{"issue":"4","key":"10.1016\/j.csda.2018.12.001_b93","doi-asserted-by":"crossref","first-page":"623","DOI":"10.1007\/s10260-015-0298-7","article-title":"Cluster-weighted t-factor analyzers for robust model-based clustering and dimension reduction","volume":"24","author":"Subedi","year":"2015","journal-title":"Stat. Methods Appl."},{"issue":"1","key":"10.1016\/j.csda.2018.12.001_b94","doi-asserted-by":"crossref","DOI":"10.1002\/sta4.177","article-title":"Flexible clustering of high-dimensional data via mixtures of joint generalized hyperbolic distributions","volume":"7","author":"Tang","year":"2018","journal-title":"Stat"},{"key":"10.1016\/j.csda.2018.12.001_b95","series-title":"Statistical analysis of finite mixture distributions","first-page":"237","author":"Titterington","year":"1985"},{"issue":"6","key":"10.1016\/j.csda.2018.12.001_b96","doi-asserted-by":"crossref","first-page":"1169","DOI":"10.1016\/j.spl.2012.02.020","article-title":"Analytic calculations for the EM algorithm for multivariate skew-mixture models","volume":"82","author":"Vrbik","year":"2012","journal-title":"Statist. Probab. Lett."},{"key":"10.1016\/j.csda.2018.12.001_b97","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1016\/j.csda.2013.07.008","article-title":"Parsimonious skew mixture models for model-based clustering and classification","volume":"71","author":"Vrbik","year":"2014","journal-title":"Comput. Statist. Data Anal."},{"key":"10.1016\/j.csda.2018.12.001_b98","unstructured":"Wand, M., 2015. KernSmooth: Functions for Kernel Smoothing Supporting Wand & Jones (1995). Version 2.23-15."},{"key":"10.1016\/j.csda.2018.12.001_b99","doi-asserted-by":"crossref","DOI":"10.1007\/s11634-018-0317-2","article-title":"Mixtures of restricted skew-t factor analyzers with common factor loadings","author":"Wang","year":"2018","journal-title":"Adv. Data Anal. Classif."},{"issue":"3","key":"10.1016\/j.csda.2018.12.001_b100","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1007\/s10182-016-0281-0","article-title":"Flexible clustering via extended mixtures of common t-factor analyzers","volume":"101","author":"Wang","year":"2017","journal-title":"AStA Adv. Stat. Anal."},{"issue":"4","key":"10.1016\/j.csda.2018.12.001_b101","doi-asserted-by":"crossref","first-page":"649","DOI":"10.1007\/s10260-017-0388-9","article-title":"Robust skew-t factor analysis models for handling missing data","volume":"26","author":"Wang","year":"2017","journal-title":"Stat. Methods Appl."},{"key":"10.1016\/j.csda.2018.12.001_b102","series-title":"Digital Image Computing: Techniques and Applications","article-title":"Multivariate skew t mixture models: applications to fluorescence-activated cell sorting data","author":"Wang","year":"2009"},{"key":"10.1016\/j.csda.2018.12.001_b103","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.csda.2018.08.016","article-title":"Mixtures of generalized hyperbolic distributions and mixtures of skew-t distributions for model-based clustering with incomplete data","volume":"130","author":"Wei","year":"2019","journal-title":"Comput. Statist. Data Anal."},{"issue":"4","key":"10.1016\/j.csda.2018.12.001_b104","doi-asserted-by":"crossref","first-page":"1078","DOI":"10.1111\/j.1541-0420.2010.01389.x","article-title":"Robust clustering using exponential power mixtures","volume":"66","author":"Zhang","year":"2010","journal-title":"Biometrics"},{"key":"10.1016\/j.csda.2018.12.001_b105","unstructured":"Zhu, X., Melnykov, V., 2017. ManlyMix: Manly mixture modeling and model-based clustering. Version 0.1.11."}],"container-title":["Computational Statistics & Data Analysis"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167947318302809?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167947318302809?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,11,12]],"date-time":"2019-11-12T19:51:55Z","timestamp":1573588315000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167947318302809"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,4]]},"references-count":105,"alternative-id":["S0167947318302809"],"URL":"https:\/\/doi.org\/10.1016\/j.csda.2018.12.001","relation":{},"ISSN":["0167-9473"],"issn-type":[{"type":"print","value":"0167-9473"}],"subject":[],"published":{"date-parts":[[2019,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Asymmetric clusters and outliers: Mixtures of multivariate contaminated shifted asymmetric Laplace distributions","name":"articletitle","label":"Article Title"},{"value":"Computational Statistics & Data Analysis","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.csda.2018.12.001","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}