{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T04:12:08Z","timestamp":1740111128021,"version":"3.37.3"},"reference-count":51,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,11,1]],"date-time":"2018-11-01T00:00:00Z","timestamp":1541030400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100000038","name":"Natural Sciences and Engineering Research Council of Canada","doi-asserted-by":"publisher","award":["RGPIN-2014-06370"],"id":[{"id":"10.13039\/501100000038","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100000196","name":"Canada Foundation for Innovation","doi-asserted-by":"publisher","award":["#35578"],"id":[{"id":"10.13039\/501100000196","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computational Statistics & Data Analysis"],"published-print":{"date-parts":[[2018,11]]},"DOI":"10.1016\/j.csda.2018.05.015","type":"journal-article","created":{"date-parts":[[2018,5,28]],"date-time":"2018-05-28T07:58:03Z","timestamp":1527494283000},"page":"160-171","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":27,"special_numbering":"C","title":["Addressing overfitting and underfitting in Gaussian model-based clustering"],"prefix":"10.1016","volume":"127","author":[{"given":"Jeffrey L.","family":"Andrews","sequence":"first","affiliation":[]}],"member":"78","reference":[{"issue":"9","key":"10.1016\/j.csda.2018.05.015_b1","doi-asserted-by":"crossref","first-page":"987","DOI":"10.1016\/j.patrec.2013.02.008","article-title":"Using evolutionary algorithms for model-based clustering","volume":"34","author":"Andrews","year":"2013","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.csda.2018.05.015_b2","series-title":"Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence","first-page":"21","article-title":"Inferring parameters and structure of latent variable models by variational Bayes","author":"Attias","year":"1999"},{"issue":"3","key":"10.1016\/j.csda.2018.05.015_b3","doi-asserted-by":"crossref","first-page":"803","DOI":"10.2307\/2532201","article-title":"Model-based Gaussian and Non-Gaussian clustering","volume":"49","author":"Banfield","year":"1993","journal-title":"Biometrics"},{"issue":"3","key":"10.1016\/j.csda.2018.05.015_b4","doi-asserted-by":"crossref","first-page":"561","DOI":"10.1016\/S0167-9473(02)00163-9","article-title":"Choosing starting values for the em algorithm for getting the highest likelihood in multivariate gaussian mixture models","volume":"41","author":"Biernacki","year":"2003","journal-title":"Comput. Statist. Data Anal."},{"issue":"4","key":"10.1016\/j.csda.2018.05.015_b5","doi-asserted-by":"crossref","first-page":"373","DOI":"10.1016\/S0167-7152(02)00396-6","article-title":"Degeneracy in the maximum likelihood estimation of univariate gaussian mixtures with EM","volume":"61","author":"Biernacki","year":"2003","journal-title":"Statist. Probab. Lett."},{"key":"10.1016\/j.csda.2018.05.015_b6","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.csda.2012.12.008","article-title":"Model-based clustering of high-dimensional data: A review","volume":"71","author":"Bouveyron","year":"2014","journal-title":"Comput. Statist. Data Anal."},{"issue":"1","key":"10.1016\/j.csda.2018.05.015_b7","doi-asserted-by":"crossref","first-page":"502","DOI":"10.1016\/j.csda.2007.02.009","article-title":"High-dimensional data clustering","volume":"52","author":"Bouveyron","year":"2007","journal-title":"Comput. Statist. Data Anal."},{"issue":"2","key":"10.1016\/j.csda.2018.05.015_b8","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1007\/BF00058655","article-title":"Bagging predictors","volume":"24","author":"Breiman","year":"1996","journal-title":"Mach. Learn."},{"key":"10.1016\/j.csda.2018.05.015_b9","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1071\/ZO9740417","article-title":"A multivariate study of variation in two species of rock crab of genus leptograpsus","volume":"22","author":"Campbell","year":"1974","journal-title":"Aust. J. Zool."},{"key":"10.1016\/j.csda.2018.05.015_b10","doi-asserted-by":"crossref","first-page":"781","DOI":"10.1016\/0031-3203(94)00125-6","article-title":"Gaussian parsimonious clustering models","volume":"28","author":"Celeux","year":"1995","journal-title":"Pattern Recognit."},{"issue":"3","key":"10.1016\/j.csda.2018.05.015_b11","doi-asserted-by":"crossref","first-page":"267","DOI":"10.2307\/2347949","article-title":"On using principal components before separating a mixture of two multivariate normal distributions","volume":"32","author":"Chang","year":"1983","journal-title":"Appl. Stat."},{"issue":"1","key":"10.1016\/j.csda.2018.05.015_b12","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1111\/j.2517-6161.1977.tb01600.x","article-title":"Maximum likelihood from incomplete data via the EM Algorithm","volume":"39","author":"Dempster","year":"1977","journal-title":"J. R. Stat. Soc. Ser. B Stat. Methodol."},{"issue":"1\u20132","key":"10.1016\/j.csda.2018.05.015_b13","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1093\/biomet\/38.1-2.159","article-title":"Testing for serial correlation in least squares regression. II","volume":"38","author":"Durbin","year":"1951","journal-title":"Biometrika"},{"key":"10.1016\/j.csda.2018.05.015_b14","doi-asserted-by":"crossref","first-page":"589","DOI":"10.1093\/biomet\/68.3.589","article-title":"Nonparametric estimates of standard error: the jackknife, the bootstrap and other methods","author":"Efron","year":"1981","journal-title":"Biometrika"},{"year":"1982","series-title":"The Jackknife, the Bootstrap and other Resampling Plans","author":"Efron","key":"10.1016\/j.csda.2018.05.015_b15"},{"issue":"458","key":"10.1016\/j.csda.2018.05.015_b16","doi-asserted-by":"crossref","first-page":"611","DOI":"10.1198\/016214502760047131","article-title":"Model-based clustering, discriminant analysis, and density estimation","volume":"97","author":"Fraley","year":"2002","journal-title":"J. Amer. Statist. Assoc."},{"year":"2006","series-title":"Finite Mixture and Markov Switching Models","author":"Fr\u00fchwirth-Schnatter","key":"10.1016\/j.csda.2018.05.015_b17"},{"key":"10.1016\/j.csda.2018.05.015_b18","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1007\/s11222-008-9112-9","article-title":"Constrained monotone EM algorithms for mixtures of multivariate t distributions","volume":"20","author":"Greselin","year":"2010","journal-title":"Stat. Comput."},{"key":"10.1016\/j.csda.2018.05.015_b19","series-title":"Proceedings of COMPSTAT 2004","first-page":"1115","article-title":"Bootstrapping finite mixture models","author":"Gr\u00fcn","year":"2004"},{"issue":"2","key":"10.1016\/j.csda.2018.05.015_b20","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1007\/BF02289162","article-title":"Some necessary conditions for common-factor analysis","volume":"19","author":"Guttman","year":"1954","journal-title":"Psychometrika"},{"issue":"6","key":"10.1016\/j.csda.2018.05.015_b21","doi-asserted-by":"crossref","first-page":"431","DOI":"10.1002\/env.2236","article-title":"Dionysus: a stochastic fire growth scenario generator","volume":"25","author":"Han","year":"2014","journal-title":"Environmetrics"},{"issue":"2","key":"10.1016\/j.csda.2018.05.015_b22","doi-asserted-by":"crossref","DOI":"10.1080\/10691898.2003.11910711","article-title":"Exploring relationships in body dimensions","volume":"11","author":"Heinz","year":"2003","journal-title":"J. Stat. Educ."},{"issue":"2","key":"10.1016\/j.csda.2018.05.015_b23","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1007\/s10260-004-0092-4","article-title":"A likelihood-based constrained algorithm for multivariate normal mixture models","volume":"13","author":"Ingrassia","year":"2004","journal-title":"Stat. Methods Appl."},{"issue":"11","key":"10.1016\/j.csda.2018.05.015_b24","doi-asserted-by":"crossref","first-page":"5339","DOI":"10.1016\/j.csda.2006.10.011","article-title":"Constrained monotone EM algorithms for finite mixture of multivariate Gaussians","volume":"51","author":"Ingrassia","year":"2007","journal-title":"Comput. Statist. Data Anal."},{"issue":"4","key":"10.1016\/j.csda.2018.05.015_b25","doi-asserted-by":"crossref","first-page":"1715","DOI":"10.1016\/j.csda.2010.10.026","article-title":"Degeneracy of the EM algorithm for the MLE of multivariate Gaussian mixtures and dynamic constraints","volume":"55","author":"Ingrassia","year":"2011","journal-title":"Comput. Statist. Data Anal."},{"issue":"1","key":"10.1016\/j.csda.2018.05.015_b26","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1177\/001316446002000116","article-title":"The application of electronic computers to factor analysis","volume":"20","author":"Kaiser","year":"1960","journal-title":"Educ. Psychol. Meas."},{"issue":"1","key":"10.1016\/j.csda.2018.05.015_b27","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1111\/j.2044-8317.1961.tb00061.x","article-title":"A note on guttman\u2019s lower bound for the number of common factors","volume":"14","author":"Kaiser","year":"1961","journal-title":"British J. Math. Statist. Psych."},{"issue":"3","key":"10.1016\/j.csda.2018.05.015_b28","doi-asserted-by":"crossref","first-page":"577","DOI":"10.1016\/S0167-9473(02)00177-9","article-title":"Choosing initial values for the EM algorithm for finite mixtures","volume":"41","author":"Karlis","year":"2003","journal-title":"Comput. Statist. Data Anal."},{"issue":"8","key":"10.1016\/j.csda.2018.05.015_b29","doi-asserted-by":"crossref","first-page":"759","DOI":"10.1016\/S0167-8655(00)00031-3","article-title":"Learning mixture models using a genetic version of the EM algorithm","volume":"21","author":"Mart\u0131nez","year":"2000","journal-title":"Pattern Recognit. Lett."},{"issue":"11","key":"10.1016\/j.csda.2018.05.015_b30","doi-asserted-by":"crossref","first-page":"5352","DOI":"10.1016\/j.csda.2006.07.020","article-title":"Variational approximations in bayesian model selection for finite mixture distributions","volume":"51","author":"McGrory","year":"2007","journal-title":"Comput. Statist. Data Anal."},{"key":"10.1016\/j.csda.2018.05.015_b31","doi-asserted-by":"crossref","first-page":"318","DOI":"10.2307\/2347790","article-title":"On bootstrapping the likelihood ratio test stastistic for the number of components in a normal mixture","author":"McLachlan","year":"1987","journal-title":"Appl. Stat."},{"year":"2008","series-title":"The EM Algorithm and Extensions","author":"McLachlan","key":"10.1016\/j.csda.2018.05.015_b32"},{"year":"2004","series-title":"Finite Mixture Models","author":"McLachlan","key":"10.1016\/j.csda.2018.05.015_b33"},{"issue":"2","key":"10.1016\/j.csda.2018.05.015_b34","doi-asserted-by":"crossref","first-page":"1","DOI":"10.18637\/jss.v004.i02","article-title":"The emmix software for the fitting of mixtures of normal and t-components","volume":"4","author":"McLachlan","year":"1999","journal-title":"J. Stat. Softw."},{"year":"2016","series-title":"Mixture Model-based Classification","author":"McNicholas","key":"10.1016\/j.csda.2018.05.015_b35"},{"issue":"3","key":"10.1016\/j.csda.2018.05.015_b36","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1007\/s00357-016-9211-9","article-title":"Model-based clustering","volume":"33","author":"McNicholas","year":"2016","journal-title":"J. Classification"},{"key":"10.1016\/j.csda.2018.05.015_b37","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1007\/s11222-008-9056-0","article-title":"Parsimonious Gaussian Mixture Models","volume":"18","author":"McNicholas","year":"2008","journal-title":"Stat. Comput."},{"key":"10.1016\/j.csda.2018.05.015_b38","unstructured":"Muraro, S., 1975. Prescribed fire predictor, Canadian Forest Service, Pacific Forestry Centre, Victoria, BC."},{"issue":"8","key":"10.1016\/j.csda.2018.05.015_b39","doi-asserted-by":"crossref","first-page":"1344","DOI":"10.1109\/TPAMI.2005.162","article-title":"Genetic-based EM algorithm for learning Gaussian mixture models","volume":"27","author":"Pernkopf","year":"2005","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.csda.2018.05.015_b40","unstructured":"Qiu, W., Joe, H., 2015. ClusterGeneration: Random Cluster Generation (with Specified Degree of Separation). R package version 1.3.4."},{"key":"10.1016\/j.csda.2018.05.015_b41","unstructured":"Quintilio, D., Fahnestock, G.R., Dub\u00e9, D.E., et al., 1977. Fire behavior in upland jack pine: the darwin lake project, Technical report, Information Report NOR-X-174, Canadian Forest Service, Northern Forest Research Centre, Edmonton, Alberta."},{"issue":"2","key":"10.1016\/j.csda.2018.05.015_b42","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1023\/A:1008938201645","article-title":"Reparameterization strategies for hidden markov models and bayesian approaches to maximum likelihood estimation","volume":"8","author":"Robert","year":"1998","journal-title":"Stat. Comput."},{"issue":"2","key":"10.1016\/j.csda.2018.05.015_b43","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1007\/BF02294461","article-title":"EM and beyond","volume":"56","author":"Rubin","year":"1991","journal-title":"Psychometrika"},{"issue":"2","key":"10.1016\/j.csda.2018.05.015_b44","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1214\/aos\/1176344136","article-title":"Estimating the dimension of a model","volume":"6","author":"Schwarz","year":"1978","journal-title":"Ann. Statist."},{"issue":"1","key":"10.1016\/j.csda.2018.05.015_b45","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1139\/x87-014","article-title":"Fire behavior in immature jack pine","volume":"17","author":"Stocks","year":"1987","journal-title":"Can. J. Forest Res."},{"issue":"6","key":"10.1016\/j.csda.2018.05.015_b46","doi-asserted-by":"crossref","first-page":"783","DOI":"10.1139\/x89-119","article-title":"Fire behavior in mature jack pine","volume":"19","author":"Stocks","year":"1989","journal-title":"Can. J. Forest Res."},{"issue":"1","key":"10.1016\/j.csda.2018.05.015_b47","doi-asserted-by":"crossref","first-page":"8","DOI":"10.5558\/tfc63008-1","article-title":"Fire potential in the spruce budworm-damaged forests of Ontario","volume":"63","author":"Stocks","year":"1987","journal-title":"For. Chron."},{"issue":"4","key":"10.1016\/j.csda.2018.05.015_b48","first-page":"671","article-title":"Model search by bootstrap \u2018bumping\u2019","volume":"8","author":"Tibshirani","year":"1999","journal-title":"J. Comput. Graph. Statist."},{"year":"1985","series-title":"Statistical Analysis of Finite Mixture Distributions","author":"Titterington","key":"10.1016\/j.csda.2018.05.015_b49"},{"key":"10.1016\/j.csda.2018.05.015_b50","unstructured":"Van\u00a0Wagner, C.E., Stocks, B., Lawson, B., Alexander, M., Lynham, T., McAlpine, R., 1992. Development and structure of the canadian forest fire behaviour prediction system. Forestry canada fire danger group. Technical Report, Information Report ST-X-3, Forestry Canada, Science and Sustainable Development Directorate, Ottawa, Ont."},{"issue":"1","key":"10.1016\/j.csda.2018.05.015_b51","doi-asserted-by":"crossref","first-page":"240","DOI":"10.1111\/j.0006-341X.2001.00240.x","article-title":"Minimizing model fitting objectives that contain spurious local minima by bootstrap restarting","volume":"57","author":"Wood","year":"2001","journal-title":"Biometrics"}],"container-title":["Computational Statistics & Data Analysis"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167947318301245?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167947318301245?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T02:17:28Z","timestamp":1720318648000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167947318301245"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,11]]},"references-count":51,"alternative-id":["S0167947318301245"],"URL":"https:\/\/doi.org\/10.1016\/j.csda.2018.05.015","relation":{},"ISSN":["0167-9473"],"issn-type":[{"type":"print","value":"0167-9473"}],"subject":[],"published":{"date-parts":[[2018,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Addressing overfitting and underfitting in Gaussian model-based clustering","name":"articletitle","label":"Article Title"},{"value":"Computational Statistics & Data Analysis","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.csda.2018.05.015","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}]}}