{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,31]],"date-time":"2024-07-31T17:08:34Z","timestamp":1722445714193},"reference-count":161,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,11,1]],"date-time":"2020-11-01T00:00:00Z","timestamp":1604188800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2020,11,1]],"date-time":"2020-11-01T00:00:00Z","timestamp":1604188800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2020,11,1]],"date-time":"2020-11-01T00:00:00Z","timestamp":1604188800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2020,11,1]],"date-time":"2020-11-01T00:00:00Z","timestamp":1604188800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2020,11,1]],"date-time":"2020-11-01T00:00:00Z","timestamp":1604188800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2020,11,1]],"date-time":"2020-11-01T00:00:00Z","timestamp":1604188800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2020,11,1]],"date-time":"2020-11-01T00:00:00Z","timestamp":1604188800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Science Review"],"published-print":{"date-parts":[[2020,11]]},"DOI":"10.1016\/j.cosrev.2020.100311","type":"journal-article","created":{"date-parts":[[2020,10,13]],"date-time":"2020-10-13T09:42:49Z","timestamp":1602582169000},"page":"100311","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":64,"special_numbering":"C","title":["Machine learning techniques for hate speech classification of twitter data: State-of-the-art, future challenges and research directions"],"prefix":"10.1016","volume":"38","author":[{"given":"Femi Emmanuel","family":"Ayo","sequence":"first","affiliation":[]},{"given":"Olusegun","family":"Folorunso","sequence":"additional","affiliation":[]},{"given":"Friday Thomas","family":"Ibharalu","sequence":"additional","affiliation":[]},{"given":"Idowu Ademola","family":"Osinuga","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cosrev.2020.100311_b1","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1016\/j.chb.2018.08.039","article-title":"Social media big data analytics: A survey","volume":"101","author":"Ghani","year":"2019","journal-title":"Comput. Hum. Behav."},{"issue":"1","key":"10.1016\/j.cosrev.2020.100311_b2","doi-asserted-by":"crossref","DOI":"10.1016\/j.im.2018.11.001","article-title":"Business value of big data analytics: A systems-theoretic approach and empirical test","volume":"57","author":"Dong","year":"2020","journal-title":"Inf. Manage."},{"issue":"1","key":"10.1016\/j.cosrev.2020.100311_b3","doi-asserted-by":"crossref","first-page":"132","DOI":"10.1111\/coin.12017","article-title":"A survey of techniques for event detection in twitter","volume":"31","author":"Atefeh","year":"2015","journal-title":"Comput. Intell."},{"key":"10.1016\/j.cosrev.2020.100311_b4","series-title":"Social Movement Studies","first-page":"1","article-title":"The new information frontier: toward a more nuanced view of social movement communication","author":"Earl","year":"2016"},{"key":"10.1016\/j.cosrev.2020.100311_b5","series-title":"Social Media and Local Governments","first-page":"321","article-title":"Social media use in crisis communication management: An opportunity for local communities?","author":"Medina","year":"2016"},{"issue":"2","key":"10.1016\/j.cosrev.2020.100311_b6","doi-asserted-by":"crossref","first-page":"785","DOI":"10.1007\/s11069-017-3155-1","article-title":"Online communication behavior at the onset of a catastrophe: an exploratory study of the (2008) wenchan earthquake in China","volume":"91","author":"Lu","year":"2018","journal-title":"Nat. Hazards"},{"key":"10.1016\/j.cosrev.2020.100311_b7","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/j.eswa.2016.11.022","article-title":"Company event popularity for financial markets using Twitter and sentiment analysis","volume":"71","author":"Daniel","year":"2017","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.cosrev.2020.100311_b8","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.ijnurstu.2016.02.004","article-title":"Using Twitter\u2122 to drive research impact: a discussion of strategies, opportunities and challenges","volume":"59","author":"Schnitzler","year":"2016","journal-title":"Int. J. Nursing Stud."},{"key":"10.1016\/j.cosrev.2020.100311_b9","doi-asserted-by":"crossref","unstructured":"J. Hurlock, M.L. Wilson, Searching Twitter: Separating the tweet from the chaff, in: International AAAI Conference on Weblogs and Social Media, Barcelona, Spain, 2011, pp. 161\u2013168.","DOI":"10.1609\/icwsm.v5i1.14117"},{"key":"10.1016\/j.cosrev.2020.100311_b10","series-title":"Proceedings of the 19th International Conference on World Wide Web","first-page":"591","article-title":"What is Twitter, a social network or a news media?","author":"Kwak","year":"2010"},{"issue":"3","key":"10.1016\/j.cosrev.2020.100311_b11","first-page":"1","article-title":"Using twitter to raise the profile of childhood cancer awareness month","volume":"9","author":"Nejad","year":"2020","journal-title":"Netw. Model. Anal. Health Inf. Bioinform."},{"key":"10.1016\/j.cosrev.2020.100311_b12","series-title":"Proceedings of the Fifth International AAAI Conference on Weblogs and Social Media","first-page":"458","article-title":"Who should I follow? Recommending people in directed social networks","author":"Brzozowski","year":"2011"},{"issue":"2","key":"10.1016\/j.cosrev.2020.100311_b13","first-page":"98","article-title":"e-Dermatology: social networks and other web based tools","volume":"107","author":"Taberner","year":"2016","journal-title":"Actas Dermo-Sifiliogr\u00e1ficas (Engl. Ed.)"},{"issue":"1","key":"10.1016\/j.cosrev.2020.100311_b14","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1080\/1369118X.2015.1093532","article-title":"Understanding the value of networked publics in radio: employing digital methods and social network analysis to understand the Twitter publics of two Italian national radio stations","volume":"19","author":"Bonini","year":"2016","journal-title":"Inf. Commun. Soc."},{"key":"10.1016\/j.cosrev.2020.100311_b15","series-title":"Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS \u201909","first-page":"42","article-title":"Twitterstand: news in tweets","author":"Sankaranarayanan","year":"2009"},{"issue":"11","key":"10.1016\/j.cosrev.2020.100311_b16","doi-asserted-by":"crossref","first-page":"2169","DOI":"10.1002\/asi.21149","article-title":"Twitter power: Tweets as electronic word of mouth","volume":"60","author":"Jansen","year":"2009","journal-title":"J. Am. Soc. Inf. Sci. Technol."},{"key":"10.1016\/j.cosrev.2020.100311_b17","unstructured":"K.L. Liu, W. Li, M. Guo, Emoticon smoothed language models for Twitter sentiment analysis, in: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, Toronto, ON, 2012."},{"key":"10.1016\/j.cosrev.2020.100311_b18","series-title":"Proceedings of the Seventh Conference on International Language Resources and Evaluation (LREC\u201910), Valletta, Malta","first-page":"19","article-title":"Twitter as a corpus for sentiment analysis and opinion mining","author":"Pak","year":"2010"},{"key":"10.1016\/j.cosrev.2020.100311_b19","doi-asserted-by":"crossref","DOI":"10.1016\/j.chb.2019.106188","article-title":"Is the message the medium? How politicians\u2019 Twitter blunders affect perceived authenticity of Twitter communication","volume":"104","author":"Lee","year":"2020","journal-title":"Comput. Hum. Behav."},{"key":"10.1016\/j.cosrev.2020.100311_b20","doi-asserted-by":"crossref","first-page":"438","DOI":"10.1016\/j.techfore.2018.09.009","article-title":"Polarization and acculturation in US election 2016 outcomes\u2013can twitter analytics predict changes in voting preferences","volume":"145","author":"Grover","year":"2019","journal-title":"Technol. Forecast. Soc. Change"},{"key":"10.1016\/j.cosrev.2020.100311_b21","series-title":"International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction","first-page":"231","article-title":"Automatic crime prediction using events extracted from twitter posts","author":"Wang","year":"2012"},{"issue":"1","key":"10.1016\/j.cosrev.2020.100311_b22","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1080\/19331681.2019.1702607","article-title":"Detecting weak and strong islamophobic hate speech on social media","volume":"17","author":"Vidgen","year":"2020","journal-title":"J. Inf. Technol. Polit."},{"key":"10.1016\/j.cosrev.2020.100311_b23","series-title":"Encyclopedia of the American Constitution, vol. 3","first-page":"1277","article-title":"Hate speech","author":"Nockleby","year":"2000"},{"issue":"4","key":"10.1016\/j.cosrev.2020.100311_b24","doi-asserted-by":"crossref","first-page":"215","DOI":"10.14257\/ijmue.2015.10.4.21","article-title":"A lexicon-based approach for hate speech detection","volume":"10","author":"Gitari","year":"2015","journal-title":"Int. J. Multimedia Ubiquit. Eng."},{"key":"10.1016\/j.cosrev.2020.100311_b25","unstructured":"K. Lee, B.D. Eoff, J. Caverlee, Seven months with the devils: A long-term study of content polluters on Twitter, in: International AAAI Conference on Weblogs and Social Media, Barcelona, Spain, 2011."},{"key":"10.1016\/j.cosrev.2020.100311_b26","series-title":"Proceedings of the 20th International Conference on World Wide Web","first-page":"675","article-title":"Information credibility on twitter","author":"Castillo","year":"2011"},{"key":"10.1016\/j.cosrev.2020.100311_b27","doi-asserted-by":"crossref","unstructured":"H. Mulki, H. Haddad, C.B. Ali, H. Alshabani, L-HSAB: A levantine twitter dataset for hate speech and abusive language, in: Proceedings of the Third Workshop on Abusive Language Online, 2019, pp. 111\u2013118.","DOI":"10.18653\/v1\/W19-3512"},{"key":"10.1016\/j.cosrev.2020.100311_b28","doi-asserted-by":"crossref","unstructured":"T. Davidson, D. Warmsley, M. Macy, I. Weber, Automated hate speech detection and the problem of offensive language, in: Eleventh International AAAI Conference on Web and Social Media, 2017, pp. 512\u2013515.","DOI":"10.1609\/icwsm.v11i1.14955"},{"key":"10.1016\/j.cosrev.2020.100311_b29","doi-asserted-by":"crossref","unstructured":"E. Wulczyn, N. Thain, L. Dixon, Ex machina: Personal attacks seen at scale, in: Proceedings of the 26th International Conference on World Wide Web, 2017, pp. 1391\u20131399.","DOI":"10.1145\/3038912.3052591"},{"key":"10.1016\/j.cosrev.2020.100311_b30","doi-asserted-by":"crossref","unstructured":"Z. Waseem, D. Hovy, Hateful symbols or hateful people? predictive features for hate speech detection on twitter, in: Proceedings of the NAACL student research workshop, 2016, pp. 88\u201393.","DOI":"10.18653\/v1\/N16-2013"},{"key":"10.1016\/j.cosrev.2020.100311_b31","series-title":"Semeval-2019 task 6: Identifying and categorizing offensive language in social media (offenseval)","author":"Zampieri","year":"2019"},{"key":"10.1016\/j.cosrev.2020.100311_b32","doi-asserted-by":"crossref","unstructured":"P. Liu, J. Guberman, L. Hemphill, A. Culotta, Forecasting the presence and intensity of hostility on Instagram using linguistic and social features, in: Twelfth International AAAI Conference on Web and Social Media, 2018.","DOI":"10.1609\/icwsm.v12i1.15022"},{"key":"10.1016\/j.cosrev.2020.100311_b33","series-title":"Hate speech dataset from a white supremacy forum","author":"de Gibert","year":"2018"},{"key":"10.1016\/j.cosrev.2020.100311_b34","unstructured":"\u00d2.G. i\u00a0Orts, Multilingual detection of hate speech against immigrants and women in Twitter at SemEval-2019 task 5: Frequency analysis interpolation for hate in speech detection, in: Proceedings of the 13th International Workshop on Semantic Evaluation, 2019, pp. 460\u2013463."},{"key":"10.1016\/j.cosrev.2020.100311_b35","doi-asserted-by":"crossref","unstructured":"A.M. Founta, C. Djouvas, D. Chatzakou, I. Leontiadis, J. Blackburn, G. Stringhini, N. Kourtellis, Large scale crowdsourcing and characterization of twitter abusive behavior, in: Twelfth International AAAI Conference on Web and Social Media, 2018.","DOI":"10.1609\/icwsm.v12i1.14991"},{"key":"10.1016\/j.cosrev.2020.100311_b36","series-title":"Measuring the reliability of hate speech annotations: The case of the european refugee crisis","author":"Ross","year":"2017"},{"key":"10.1016\/j.cosrev.2020.100311_b37","series-title":"Overview of the germeval 2018 shared task on the identification of offensive language","author":"Wiegand","year":"2018"},{"key":"10.1016\/j.cosrev.2020.100311_b38","doi-asserted-by":"crossref","unstructured":"M.O. Ibrohim, I. Budi, Multi-label hate speech and abusive language detection in Indonesian twitter, in: Proceedings of the Third Workshop on Abusive Language Online, 2019, pp. 46\u201357.","DOI":"10.18653\/v1\/W19-3506"},{"key":"10.1016\/j.cosrev.2020.100311_b39","unstructured":"M. Sanguinetti, F. Poletto, C. Bosco, V. Patti, M. Stranisci, An italian twitter corpus of hate speech against immigrants, in: Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), 2018."},{"key":"10.1016\/j.cosrev.2020.100311_b40","doi-asserted-by":"crossref","unstructured":"R. Sprugnoli, S. Menini, S. Tonelli, F. Oncini, E. Piras, Creating a whatsapp dataset to study pre-teen cyberbullying, in: Proceedings of the 2nd Workshop on Abusive Language Online (ALW2), 2018, pp. 51\u201359.","DOI":"10.18653\/v1\/W18-5107"},{"key":"10.1016\/j.cosrev.2020.100311_b41","unstructured":"M. Ptaszynski, A. Pieciukiewicz, P. Dyba\u0142a, Results of the poleval 2019 shared task 6: first dataset and open shared task for automatic cyberbullying detection in polish Twitter, in: Proceedings ofthePolEval2019Workshop, 2019, 89p."},{"key":"10.1016\/j.cosrev.2020.100311_b42","doi-asserted-by":"crossref","unstructured":"P. Fortuna, J.R. da\u00a0Silva, L. Wanner, S. Nunes, A hierarchically-labeled portuguese hate speech dataset, in: Proceedings of the Third Workshop on Abusive Language Online, 2019, pp. 94\u2013104.","DOI":"10.18653\/v1\/W19-3510"},{"key":"10.1016\/j.cosrev.2020.100311_b43","series-title":"Anais Do VI Brazilian Workshop on Social Network Analysis and Mining","article-title":"Offensive comments in the Brazilian web: a dataset and baseline results","author":"de Pelle","year":"2017"},{"key":"10.1016\/j.cosrev.2020.100311_b44","series-title":"2010 43rd Hawaii International Conference on System Sciences","first-page":"1","article-title":"Tweet, tweet, retweet: Conversational aspects of retweeting on twitter","author":"Boyd","year":"2010"},{"issue":"1","key":"10.1016\/j.cosrev.2020.100311_b45","first-page":"33","article-title":"Sentiment analysis by using fuzzy logic","volume":"4","author":"Haque","year":"2014","journal-title":"Int. J. Comput. Sci. Eng. Inf. Technol."},{"key":"10.1016\/j.cosrev.2020.100311_b46","series-title":"2019 Sixth International Conference on Social Networks Analysis, Management and Security (SNAMS)","first-page":"83","article-title":"Tweets emotion prediction by using fuzzy logic system","author":"Tashtoush","year":"2019"},{"key":"10.1016\/j.cosrev.2020.100311_b47","doi-asserted-by":"crossref","unstructured":"H. Liu, P. Burnap, W. Alorainy, M.L. Williams, Fuzzy multi-task learning for hate speech type identification, in: The World Wide Web Conference, 2019, pp. 3006\u20133012.","DOI":"10.1145\/3308558.3313546"},{"key":"10.1016\/j.cosrev.2020.100311_b48","series-title":"Case Studies in Secure Computing: Achievements and Trends","first-page":"273","article-title":"Classification of radical messages in twitter using security associations","author":"Wadhwa","year":"2014"},{"key":"10.1016\/j.cosrev.2020.100311_b49","series-title":"Inriafbk at germeval 2018: Identifying offensive tweets using recurrent neural networks","author":"Corazza","year":"2018"},{"key":"10.1016\/j.cosrev.2020.100311_b50","series-title":"Detecting offensive language in tweets using deep learning","first-page":"1","author":"Pitsilis","year":"2018"},{"key":"10.1016\/j.cosrev.2020.100311_b51","doi-asserted-by":"crossref","unstructured":"K. Winter, R. Kern, Know-center at SemEval-2019 task 5: Multilingual hate speech detection on Twitter using CNNs, in: Proceedings of the 13th International Workshop on Semantic Evaluation, 2019, pp. 431\u2013435.","DOI":"10.18653\/v1\/S19-2076"},{"key":"10.1016\/j.cosrev.2020.100311_b52","doi-asserted-by":"crossref","unstructured":"A. Ribeiro, N. Silva, F-HatEval at SemEval-2019 Task 5: Convolutional neural networks for hate speech detection against women and immigrants on Twitter, in: Proceedings of the 13th International Workshop on Semantic Evaluation, 2019, pp. 420-425.","DOI":"10.18653\/v1\/S19-2074"},{"key":"10.1016\/j.cosrev.2020.100311_b53","series-title":"Disambiguating Sentiment: An Ensemble of Humour, Sarcasm, and Hate Speech Features for Sentiment Classification. W-NUT 2019","first-page":"337","author":"Badlani","year":"2019"},{"key":"10.1016\/j.cosrev.2020.100311_b54","doi-asserted-by":"crossref","unstructured":"J. Serra, I. Leontiadis, D. Spathis, G. Stringhini, J. Blackburn, A. Vakali, Class-based prediction errors to detect hate speech with out-of-vocabulary words, in: Proceedings of the First Workshop on Abusive Language Online, 2017, pp. 36-40.","DOI":"10.18653\/v1\/W17-3005"},{"key":"10.1016\/j.cosrev.2020.100311_b55","series-title":"VAIS Hate speech detection system: A deep learning based approach for system combination","author":"Nguyen","year":"2019"},{"key":"10.1016\/j.cosrev.2020.100311_b56","doi-asserted-by":"crossref","unstructured":"E. Doostmohammadi, H. Sameti, A. Saffar, Ghmerti at SemEval-2019 Task 6: A Deep Word-and Character-based Approach to Offensive Language Identification, in: Proceedings of the 13th International Workshop on Semantic Evaluation, 2019, pp. 617\u2013621.","DOI":"10.18653\/v1\/S19-2110"},{"key":"10.1016\/j.cosrev.2020.100311_b57","doi-asserted-by":"crossref","unstructured":"S. Modha, P. Majumder, D. Patel, 2019. DA-LD-Hildesheim at SemEval-2019 Task 6: Tracking Offensive Content with Deep Learning using Shallow Representation, in: Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 577-581.","DOI":"10.18653\/v1\/S19-2103"},{"issue":"2","key":"10.1016\/j.cosrev.2020.100311_b58","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3371276","article-title":"MANDOLA: A big-data processing and visualization platform for monitoring and detecting online hate speech","volume":"20","author":"Paschalides","year":"2020","journal-title":"ACM Trans. Internet Technol. (TOIT)"},{"key":"10.1016\/j.cosrev.2020.100311_b59","series-title":"Proceedings of the 10th ACM Conference on Web Science","first-page":"105","article-title":"A unified deep learning architecture for abuse detection","author":"Founta","year":"2019"},{"key":"10.1016\/j.cosrev.2020.100311_b60","series-title":"Multilingual twitter corpus and baselines for evaluating demographic bias in hate speech recognition","author":"Huang","year":"2020"},{"key":"10.1016\/j.cosrev.2020.100311_b61","series-title":"Recent Trends in Image and Signal Processing in Computer Vision","first-page":"243","article-title":"Detection of hate speech and offensive language in twitter data using LSTM model","author":"Bisht","year":"2020"},{"issue":"12","key":"10.1016\/j.cosrev.2020.100311_b62","doi-asserted-by":"crossref","first-page":"4180","DOI":"10.3390\/app10124180","article-title":"Time of your hate: The challenge of time in hate speech detection on social media","volume":"10","author":"Florio","year":"2020","journal-title":"Appl. Sci."},{"key":"10.1016\/j.cosrev.2020.100311_b63","first-page":"1","article-title":"Overview of the EVALITA 2018 hate speech detection task","author":"Bosco","year":"2018"},{"key":"10.1016\/j.cosrev.2020.100311_b64","unstructured":"M. Polignano, P. Basile, M. de\u00a0Gemmis, G. Semeraro, Hate speech detection through AlBERTo Italian language understanding model, in: 3rd Workshop on Natural Language for Artificial Intelligence (NL4AI) at the 18th International Conference of the Italian Association for Artificial Intelligence, NL4AI@ AI* IA. Rende, Italy, 2019, pp. 1\u201313."},{"issue":"2","key":"10.1016\/j.cosrev.2020.100311_b65","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3377323","article-title":"A multilingual evaluation for online hate speech detection","volume":"20","author":"Corazza","year":"2020","journal-title":"ACM Trans. Internet Technol. (TOIT)"},{"key":"10.1016\/j.cosrev.2020.100311_b66","series-title":"Hate speech detection from code-mixed hindi-english tweets using deep learning models","author":"Kamble","year":"2018"},{"key":"10.1016\/j.cosrev.2020.100311_b67","doi-asserted-by":"crossref","unstructured":"N. Chakravartula, HATEMINER at SemEval-2019 Task 5: Hate speech detection against Immigrants and Women in Twitter using a Multinomial Naive Bayes Classifier, in: Proceedings of the 13th International Workshop on Semantic Evaluation, 2019, pp. 404\u2013408.","DOI":"10.18653\/v1\/S19-2071"},{"issue":"3","key":"10.1016\/j.cosrev.2020.100311_b68","first-page":"99","article-title":"Using Na\u00efve Bayes algorithm in detection of hate tweets","volume":"8","author":"Kiilu","year":"2018","journal-title":"Int. J. Sci. Res. Publ."},{"key":"10.1016\/j.cosrev.2020.100311_b69","series-title":"A Preventive Measure on Hate Speech Detection on Online Social Network using Na\u00efve Bayes (No. 2967)","author":"Khond","year":"2020"},{"key":"10.1016\/j.cosrev.2020.100311_b70","doi-asserted-by":"crossref","unstructured":"M. Graff, S. Miranda-Jim\u00e9nez, E. Tellez, D.A. Ochoa, GEOTEC at SemEval-2019 task 5 and task 6: A genetic programming approach for text classification, in: Proceedings of the 13th International Workshop on Semantic Evaluation, 2019, pp. 639\u2013644.","DOI":"10.18653\/v1\/S19-2114"},{"key":"10.1016\/j.cosrev.2020.100311_b71","doi-asserted-by":"crossref","unstructured":"S. Miranda-Jim\u00e9nez, M. Graff, E.S. Tellez, D. Moctezuma, GEOTEC at SemEval 2017 task 4: A B4MSA ensemble based on genetic programming for Twitter sentiment analysis, in: Proceedings of the 11th international workshop on semantic evaluation (SEMEVAL-2017), 2017, pp. 771\u2013776.","DOI":"10.18653\/v1\/S17-2130"},{"key":"10.1016\/j.cosrev.2020.100311_b72","unstructured":"L.E.A. Vega, J.C. Reyes-Maga\u00f1a, H. G\u00f3mez-Adorno, G. Bel-Enguix, MineriaUNAM at SemEval-2019 task 5: Detecting hate speech in Twitter using multiple features in a combinatorial framework, in: Proceedings of the 13th International Workshop on Semantic Evaluation, 2019 pp. 447\u2013452."},{"key":"10.1016\/j.cosrev.2020.100311_b73","doi-asserted-by":"crossref","unstructured":"C. Perell\u00f3, D. Tom\u00e1s, A. Garcia-Garcia, J. Garcia-Rodriguez, J. Camacho-Collados, 2019. UA at SemEval-2019 Task 5: Setting a Strong Linear Baseline for Hate Speech Detection, in: Proceedings of the 13th International Workshop on Semantic Evaluation, pp. 508-513.","DOI":"10.18653\/v1\/S19-2091"},{"key":"10.1016\/j.cosrev.2020.100311_b74","series-title":"13th International Workshop on Semantic Evaluation","first-page":"54","article-title":"Semeval-2019 task 5: Multilingual detection of hate speech against immigrants and women in twitter","author":"Basile","year":"2019"},{"key":"10.1016\/j.cosrev.2020.100311_b75","series-title":"Proceedings of the 13th International Workshop on Semantic Evaluation","first-page":"70","article-title":"Fermi at semeval-2019 task 5: Using sentence embeddings to identify hate speech against immigrants and women in twitter","author":"Indurthi","year":"2019"},{"key":"10.1016\/j.cosrev.2020.100311_b76","series-title":"On the Detection of Hate Speech, Hate Speakers and Polarized Groups in Online Social Media","author":"Warmsley","year":"2017"},{"key":"10.1016\/j.cosrev.2020.100311_b77","series-title":"Privacy-preserving classification of personal text messages with secure multi-party computation: An application to hate-speech detection","author":"De Cock","year":"2019"},{"key":"10.1016\/j.cosrev.2020.100311_b78","doi-asserted-by":"crossref","first-page":"13825","DOI":"10.1109\/ACCESS.2018.2806394","article-title":"Hate speech on twitter: A pragmatic approach to collect hateful and offensive expressions and perform hate speech detection","volume":"6","author":"Watanabe","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.cosrev.2020.100311_b79","doi-asserted-by":"crossref","first-page":"5477","DOI":"10.1109\/ACCESS.2016.2594194","article-title":"A pattern-based approach for sarcasm detection on twitter","volume":"4","author":"Bouazizi","year":"2016","journal-title":"IEEE Access"},{"issue":"2","key":"10.1016\/j.cosrev.2020.100311_b80","doi-asserted-by":"crossref","first-page":"226","DOI":"10.1177\/0165551519828627","article-title":"Twitter sentiment analysis using fuzzy integral classifier fusion","volume":"46","author":"Emadi","year":"2020","journal-title":"J. Inf. Sci."},{"key":"10.1016\/j.cosrev.2020.100311_b81","series-title":"International Conference on Statistical Language and Speech Processing","first-page":"286","article-title":"Prediction uncertainty estimation for hate speech classification","author":"Miok","year":"2019"},{"key":"10.1016\/j.cosrev.2020.100311_b82","doi-asserted-by":"crossref","unstructured":"B. Wang, H. Ding, YNU NLP at SemEval-2019 task 5: Attention and capsule ensemble for identifying hate speech, in: Proceedings of the 13th International Workshop on Semantic Evaluation, 2019, pp. 529\u2013534.","DOI":"10.18653\/v1\/S19-2095"},{"key":"10.1016\/j.cosrev.2020.100311_b83","series-title":"Neural Network Models for Hate Speech Classification in Tweets","author":"Liu","year":"2018"},{"key":"10.1016\/j.cosrev.2020.100311_b84","doi-asserted-by":"crossref","unstructured":"H. Faris, I.A.M. Habib, P.A. Castillo, Hate speech detection using word embedding and deep learning in the arabic language context, in: Proceedings of the 9th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2020), 2020, pp. 453\u2013460.","DOI":"10.5220\/0008954004530460"},{"issue":"4","key":"10.1016\/j.cosrev.2020.100311_b85","first-page":"69","article-title":"Deep context-aware embedding for abusive and hate speech detection on twitter","volume":"15","author":"Naseem","year":"2019","journal-title":"Aust. J. Intell. Inf. Process. Syst."},{"key":"10.1016\/j.cosrev.2020.100311_b86","first-page":"1","article-title":"Hate-speech detection in Portuguese using CNN and psycho-linguistic dictionary","volume":"5","author":"Silva","year":"2019","journal-title":"J. Inf. Data Manage."},{"key":"10.1016\/j.cosrev.2020.100311_b87","series-title":"Data Augmentation and Deep Learning for Hate Speech Detection","author":"Hemker","year":"2018"},{"issue":"1","key":"10.1016\/j.cosrev.2020.100311_b88","article-title":"Identify abusive and offensive language in Indonesian Twitter using deep learning approach","volume":"1196","author":"Ibrohim","year":"2019","journal-title":"J. Phys. Conf. Ser."},{"key":"10.1016\/j.cosrev.2020.100311_b89","doi-asserted-by":"crossref","unstructured":"J. Mitrovi\u0107, B. Birkeneder, M. Granitzer, nlpUP at SemEval-2019 Task 6: a deep neural language model for offensive language detection, in: Proceedings of the 13th International Workshop on Semantic Evaluation, 2019, pp. 722\u2013726.","DOI":"10.18653\/v1\/S19-2127"},{"key":"10.1016\/j.cosrev.2020.100311_b90","series-title":"Amobee at semeval-2019 tasks 5 and 6: Multiple choice CNN over contextual embedding","author":"Rozental","year":"2019"},{"key":"10.1016\/j.cosrev.2020.100311_b91","series-title":"Hierarchical cvae for fine-grained hate speech classification","author":"Qian","year":"2018"},{"key":"10.1016\/j.cosrev.2020.100311_b92","doi-asserted-by":"crossref","unstructured":"A. Garain, A. Basu, 2019. The Titans at SemEval-2019 task 6: Offensive language identification, categorization and target identification, in: Proceedings of the 13th International Workshop on Semantic Evaluation, 2019, pp. 759\u2013762.","DOI":"10.18653\/v1\/S19-2133"},{"key":"10.1016\/j.cosrev.2020.100311_b93","first-page":"1","article-title":"A big data approach to sentiment analysis using greedy feature selection with cat swarm optimization-based long short-term memory neural networks","author":"Alarifi","year":"2018","journal-title":"J. Supercomput."},{"issue":"4","key":"10.1016\/j.cosrev.2020.100311_b94","doi-asserted-by":"crossref","first-page":"764","DOI":"10.1016\/j.ipm.2017.02.004","article-title":"Twitter sentiment analysis using hybrid cuckoo search method","volume":"53","author":"Pandey","year":"2017","journal-title":"Inf. Process. Manage."},{"key":"10.1016\/j.cosrev.2020.100311_b95","doi-asserted-by":"crossref","unstructured":"H. Mulki, C.B. Ali, H. Haddad, I. Babao\u011flu, Tw-StAR at SemEval-2019 Task 5: N-gram embeddings for Hate Speech Detection in Multilingual Tweets, in: Proceedings of the 13th International Workshop on Semantic Evaluation, 2019, pp. 503\u2013507.","DOI":"10.18653\/v1\/S19-2090"},{"key":"10.1016\/j.cosrev.2020.100311_b96","unstructured":"K. Rother, M. Allee, A. Rettberg, German hatespeech classification with naive bayes and logistic regression-hshl at germeval 2019-task 2, in: Proceedings of the 15th Conference on Natural Language Processing (KONVENS 2019), 2019, pp. 372\u2013376."},{"key":"10.1016\/j.cosrev.2020.100311_b97","series-title":"2018 6th International Conference on Cyber and IT Service Management (CITSM)","first-page":"1","article-title":"Sentiment analysis of state officials news on online media based on public opinion using naive Bayes classifier algorithm and particle swarm optimization","author":"Idrus","year":"2018"},{"issue":"5","key":"10.1016\/j.cosrev.2020.100311_b98","doi-asserted-by":"crossref","first-page":"1425","DOI":"10.1007\/s00521-018-3476-3","article-title":"Classifying streaming of twitter data based on sentiment analysis using hybridization","volume":"31","author":"Nagarajan","year":"2019","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.cosrev.2020.100311_b99","series-title":"2019 International Conference on Applied and Engineering Mathematics (ICAEM)","first-page":"251","article-title":"Hate speech detection using fusion approach","author":"Sajjad","year":"2019"},{"issue":"16","key":"10.1016\/j.cosrev.2020.100311_b100","doi-asserted-by":"crossref","first-page":"6266","DOI":"10.1016\/j.eswa.2013.05.057","article-title":"Twitter brand sentiment analysis: A hybrid system using n-gram analysis and dynamic artificial neural network","volume":"40","author":"Ghiassi","year":"2013","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.cosrev.2020.100311_b101","doi-asserted-by":"crossref","unstructured":"P. Badjatiya, S. Gupta, M. Gupta, V. Varma, Deep learning for hate speech detection in tweets, in: Proceedings of the 26th International Conference on World Wide Web Companion, 2017, pp. 759\u2013760.","DOI":"10.1145\/3041021.3054223"},{"key":"10.1016\/j.cosrev.2020.100311_b102","doi-asserted-by":"crossref","unstructured":"F.M. Plaza-del Arco, M.D. Molina-Gonz\u00e1lez, M.T. Mart\u00edn-Valdivia, L.A.U. Lopez, SINAI at SemEval-2019 Task 5: Ensemble learning to detect hate speech against inmigrants and women in English and Spanish tweets, in: Proceedings of the 13th International Workshop on Semantic Evaluation, 2019, pp. 476\u2013479.","DOI":"10.18653\/v1\/S19-2084"},{"issue":"8","key":"10.1016\/j.cosrev.2020.100311_b103","article-title":"Studying the viral growth of a connective action network using information event signatures","volume":"21","author":"Hemsley","year":"2016","journal-title":"First Monday"},{"key":"10.1016\/j.cosrev.2020.100311_b104","series-title":"Technology and Adolescent Health","first-page":"25","article-title":"Current trends in digital media: How and why teens use technology","author":"Chassiakos","year":"2020"},{"issue":"3","key":"10.1016\/j.cosrev.2020.100311_b105","doi-asserted-by":"crossref","first-page":"434","DOI":"10.1177\/1461444813487955","article-title":"The agenda-building function of political tweets","volume":"16","author":"Parmelee","year":"2014","journal-title":"New Media Soc."},{"key":"10.1016\/j.cosrev.2020.100311_b106","series-title":"Machine Learning: A Probabilistic Perspective","author":"Murphy","year":"2012"},{"key":"10.1016\/j.cosrev.2020.100311_b107","series-title":"The Elements of Statistical Learning: Data Mining, Inference, and Prediction","author":"Hastie","year":"2009"},{"key":"10.1016\/j.cosrev.2020.100311_b108","series-title":"Foundations of Statistical Natural Language Processing, vol. 999","author":"Manning","year":"1999"},{"key":"10.1016\/j.cosrev.2020.100311_b109","series-title":"Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition","author":"Jurafsky","year":"2009"},{"key":"10.1016\/j.cosrev.2020.100311_b110","series-title":"Workshop on Detection, Representation, and Exploitation of Events in the Semantic Web (DeRiVE 2011) at Tenth International Semantic Web Conference (ISWC 2011) of CEUR Workshop Proceedings, vol. 779","first-page":"48","article-title":"An overview of event extraction from text","author":"Hogenboom","year":"2011"},{"key":"10.1016\/j.cosrev.2020.100311_b111","series-title":"Social Network Data Analytics","first-page":"1","article-title":"An introduction to social network data analytics","author":"Aggarwal","year":"2011"},{"key":"10.1016\/j.cosrev.2020.100311_b112","series-title":"Modern Information Retrieval the Concepts and Technology behind Search","author":"Baeza-yates","year":"2011"},{"key":"10.1016\/j.cosrev.2020.100311_b113","first-page":"1","article-title":"A survey of recent methods on deriving topics from Twitter: algorithm to evaluation","author":"Nugroho","year":"2020","journal-title":"Knowl. Inf. Syst."},{"key":"10.1016\/j.cosrev.2020.100311_b114","doi-asserted-by":"crossref","first-page":"105567p","DOI":"10.1016\/j.knosys.2020.105567","article-title":"Probabilistic quantum clustering","author":"Casa\u00f1a Eslava","year":"2020","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.cosrev.2020.100311_b115","unstructured":"S. Petrovic, M. Osborne, V. Lavrenko, Streaming first story detection with application to Twitter, in: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, HLT \u201910, 2010, pp. 181\u2013189."},{"key":"10.1016\/j.cosrev.2020.100311_b116","doi-asserted-by":"crossref","first-page":"244","DOI":"10.1016\/j.neucom.2019.10.072","article-title":"Visual abstraction and exploration of large-scale geographical social media data","volume":"376","author":"Zhou","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.cosrev.2020.100311_b117","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1016\/j.compenvurbsys.2018.11.001","article-title":"Social media data: Challenges, opportunities and limitations in urban studies","volume":"74","author":"Mart\u00ed","year":"2019","journal-title":"Comput. Environ. Urban Syst."},{"key":"10.1016\/j.cosrev.2020.100311_b118","doi-asserted-by":"crossref","first-page":"455","DOI":"10.1016\/j.comcom.2019.11.042","article-title":"Predicting the security threats on the spreading of rumor, false information of facebook content based on the principle of sociology","volume":"150","author":"Wang","year":"2020","journal-title":"Comput. Commun."},{"issue":"2","key":"10.1016\/j.cosrev.2020.100311_b119","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1016\/j.bushor.2010.09.004","article-title":"The early bird catches the news: Nine things you should know about micro-blogging","volume":"54","author":"Kaplan","year":"2011","journal-title":"Bus. Horizons"},{"key":"10.1016\/j.cosrev.2020.100311_b120","unstructured":"F. Benevenuto, G. Magno, T. Rodrigues, V. Almeida, Detecting spammers on twitter, in: Collaboration, Electronic Messaging, Anti-Abuse and Spam Conference (CEAS), Redmond, WA, vol. 6, 2010, p. 12."},{"issue":"2","key":"10.1016\/j.cosrev.2020.100311_b121","doi-asserted-by":"crossref","DOI":"10.1016\/j.ipm.2019.102147","article-title":"Pachinko prediction: A Bayesian method for event prediction from social media data","volume":"57","author":"Tuke","year":"2020","journal-title":"Inf. Process. Manage."},{"key":"10.1016\/j.cosrev.2020.100311_b122","doi-asserted-by":"crossref","DOI":"10.1016\/j.rcim.2020.101958","article-title":"A generic tri-model-based approach for product-level digital twin development in a smart manufacturing environment","volume":"64","author":"Zheng","year":"2020","journal-title":"Robot. Comput.-Integr. Manuf."},{"key":"10.1016\/j.cosrev.2020.100311_b123","series-title":"Proceedings of the 18th International Conference on Distributed Computing and Networking","first-page":"10","article-title":"Efficient algorithms for predicate detection using hybrid logical clocks","author":"Yingchareonthawornchai","year":"2017"},{"issue":"1","key":"10.1016\/j.cosrev.2020.100311_b124","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1016\/j.jcss.2016.02.005","article-title":"A dynamic prime number based efficient security mechanism for big sensing data streams","volume":"83","author":"Puthal","year":"2017","journal-title":"J. Comput. System Sci."},{"key":"10.1016\/j.cosrev.2020.100311_b125","doi-asserted-by":"crossref","DOI":"10.1016\/j.cities.2019.102410","article-title":"Multi-class twitter data categorization and geocoding with a novel computing framework","volume":"96","author":"Khan","year":"2020","journal-title":"Cities"},{"issue":"1","key":"10.1016\/j.cosrev.2020.100311_b126","doi-asserted-by":"crossref","DOI":"10.1016\/j.ipm.2019.102107","article-title":"Automatic identification of eyewitness messages on twitter during disasters","volume":"57","author":"Zahra","year":"2020","journal-title":"Inf. Process. Manage."},{"issue":"1","key":"10.1016\/j.cosrev.2020.100311_b127","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1145\/2996187","article-title":"Processing affect in social media: A comparison of methods to distinguish emotions in tweets","volume":"17","author":"Meo","year":"2017","journal-title":"ACM Trans. Internet Technol. (TOIT)"},{"issue":"3","key":"10.1016\/j.cosrev.2020.100311_b128","doi-asserted-by":"crossref","first-page":"338","DOI":"10.1016\/S0019-9958(65)90241-X","article-title":"Fuzzy sets","volume":"8","author":"Zadeh","year":"1965","journal-title":"Inf. Control"},{"key":"10.1016\/j.cosrev.2020.100311_b129","doi-asserted-by":"crossref","unstructured":"U.A. Siddiqua, A.N. Chy, M. Aono, Kdehateval at semeval-2019 task 5: A neural network model for detecting hate speech in twitter, in: Proceedings of the 13th International Workshop on Semantic Evaluation, 2019, pp. 365\u2013370.","DOI":"10.18653\/v1\/S19-2064"},{"key":"10.1016\/j.cosrev.2020.100311_b130","series-title":"2018 International Conference on Control, Electronics, Renewable Energy and Communications (ICCEREC)","first-page":"159","article-title":"Text analysis for hate speech detection using backpropagation neural network","author":"Setyadi","year":"2018"},{"key":"10.1016\/j.cosrev.2020.100311_b131","doi-asserted-by":"crossref","unstructured":"G. Wiedemann, E. Ruppert, C. Biemann, UHH-LT at SemEval-2019 Task 6: Supervised vs. Unsupervised transfer learning for offensive language detection, in: Proceedings of the 13th International Workshop on Semantic Evaluation, 2019, pp. 782\u2013787.","DOI":"10.18653\/v1\/S19-2137"},{"key":"10.1016\/j.cosrev.2020.100311_b132","series-title":"Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)","first-page":"1724","article-title":"Learning phrase representations using RNN encoder\u2013decoder for statistical machine translation","author":"Cho","year":"2014"},{"key":"10.1016\/j.cosrev.2020.100311_b133","series-title":"NIPS 2014 Workshop on Deep Learning","article-title":"Empirical evaluation of gated recurrent neural networks on sequence modeling","author":"Chung","year":"2014"},{"key":"10.1016\/j.cosrev.2020.100311_b134","doi-asserted-by":"crossref","unstructured":"J.H. Park, J. Shin, P. Fung, Reducing gender bias in abusive language detection, in: Proceedings of the 2018 Conference on EMNLP, 2018, pp. 2799\u20132804.","DOI":"10.18653\/v1\/D18-1302"},{"key":"10.1016\/j.cosrev.2020.100311_b135","series-title":"Proceedings of the 6th Evaluation Campaign of Natural Language Processing and Speech Tools for Italian","first-page":"86","article-title":"Multi-task learning in deep neural networks at evalita 2018","author":"Cimino","year":"2018"},{"key":"10.1016\/j.cosrev.2020.100311_b136","series-title":"Genetic Programming: On the Programming of Computers By Means of Natural Selection","author":"Koza","year":"1992"},{"issue":"2","key":"10.1016\/j.cosrev.2020.100311_b137","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1023\/A:1022602019183","article-title":"Genetic algorithms and machine learning","volume":"3","author":"Goldberg","year":"1988","journal-title":"Mach. Learn."},{"key":"10.1016\/j.cosrev.2020.100311_b138","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/j.knosys.2015.01.013","article-title":"Revisiting evolutionary fuzzy systems: Taxonomy, applications, new trends and challenges","volume":"80","author":"Fernandez","year":"2015","journal-title":"Knowl.-Based Syst."},{"key":"10.1016\/j.cosrev.2020.100311_b139","series-title":"India Conference (INDICON), Annual","first-page":"1","article-title":"Improved particle swarm optimization based load frequency control in a single area power system","author":"Gautam","year":"2010"},{"key":"10.1016\/j.cosrev.2020.100311_b140","series-title":"2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","first-page":"1","article-title":"Evodag: A semantic genetic programming python library","author":"Graff","year":"2016"},{"issue":"3","key":"10.1016\/j.cosrev.2020.100311_b141","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Mach. Learn."},{"key":"10.1016\/j.cosrev.2020.100311_b142","doi-asserted-by":"crossref","unstructured":"A. Conneau, D. Kiela, H. Schwenk, L. Barrault, A. Bordes, Supervised learning of universal sentence representations from natural language inference data, in: Proceedings of the Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, September 9\u201311, 2017, pp. 681\u2013691.","DOI":"10.18653\/v1\/D17-1070"},{"issue":"1","key":"10.1016\/j.cosrev.2020.100311_b143","first-page":"430","article-title":"Automatic differentiation variational inference","volume":"18","author":"Kucukelbir","year":"2017","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.cosrev.2020.100311_b144","series-title":"Bag of tricks for efficient text classification","author":"Joulin","year":"2016"},{"key":"10.1016\/j.cosrev.2020.100311_b145","series-title":"Advances in Neural Information Processing Systems","first-page":"3111","article-title":"Distributed representations of words and phrases and their compositionality","author":"Mikolov","year":"2013"},{"key":"10.1016\/j.cosrev.2020.100311_b146","series-title":"2018 International Conference on Applied Information Technology and Innovation (ICAITI)","first-page":"114","article-title":"Deep learning-based implementation of hate speech identification on texts in indonesian: Preliminary study","author":"Sazany","year":"2018"},{"issue":"8","key":"10.1016\/j.cosrev.2020.100311_b147","doi-asserted-by":"crossref","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","article-title":"Long short-term memory","volume":"9","author":"Hochreiter","year":"1997","journal-title":"Neural Comput."},{"key":"10.1016\/j.cosrev.2020.100311_b148","doi-asserted-by":"crossref","unstructured":"J. Pennington, R. Socher, C.D. Manning, Glove: Global vectors for word representation, in: Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), 2014, pp. 1532\u20131543.","DOI":"10.3115\/v1\/D14-1162"},{"key":"10.1016\/j.cosrev.2020.100311_b149","series-title":"Latent universal task-specific BERT","author":"Rozental","year":"2019"},{"issue":"1","key":"10.1016\/j.cosrev.2020.100311_b150","first-page":"163","article-title":"Computational intelligence based on the behavior of cats","volume":"3","author":"Chu","year":"2007","journal-title":"Int. J. Innovative Comput. Inf. Control"},{"key":"10.1016\/j.cosrev.2020.100311_b151","series-title":"Pacific Rim International Conference on Artificial Intelligence","first-page":"854","article-title":"Cat swarm optimization","author":"Chu","year":"2006"},{"key":"10.1016\/j.cosrev.2020.100311_b152","series-title":"Nature-Inspired Optimization Algorithms","author":"Yang","year":"2014"},{"key":"10.1016\/j.cosrev.2020.100311_b153","series-title":"Proceedings of the Sixth International Symposium on Micro Machine and Human Science, MHS\u201995","first-page":"39","article-title":"A new optimizer using particle swarm theory","author":"Eberhart","year":"1995"},{"key":"10.1016\/j.cosrev.2020.100311_b154","series-title":"Proceedings of ICNN\u201995-International Conference on Neural Networks, vol. 4","first-page":"1942","article-title":"Particle swarm optimization","author":"Kennedy","year":"1995"},{"key":"10.1016\/j.cosrev.2020.100311_b155","doi-asserted-by":"crossref","unstructured":"R. Schwartz, T. Imai, F. Kubala, L. Nguyen, J. Makhoul, A maximum likelihood model for topic classification of broadcast news, in: Proc. fifth European Conference on Speech Communication and Technology, Rhodes, Greece, vol. 3, 1997, pp. 1455\u20131458.","DOI":"10.21437\/Eurospeech.1997-422"},{"key":"10.1016\/j.cosrev.2020.100311_b156","series-title":"Combining lexicon-based and learning-based methods for Twitter sentiment analysis","author":"Zhang","year":"2011"},{"key":"10.1016\/j.cosrev.2020.100311_b157","series-title":"Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 1","first-page":"151","article-title":"Target-dependent twitter sentiment classification","author":"Jiang","year":"2011"},{"key":"10.1016\/j.cosrev.2020.100311_b158","series-title":"The Semantic Web: ESWC 2011 Workshops, Lecture Notes in Computer Science, vol. 7117","first-page":"88","article-title":"Automatic detection of political opinions in tweets","author":"Maynard","year":"2012"},{"issue":"12","key":"10.1016\/j.cosrev.2020.100311_b159","first-page":"1","article-title":"Twitter sentiment classification using distant supervision","volume":"1","author":"Go","year":"2009","journal-title":"CS224N Project Report, Stanford"},{"key":"10.1016\/j.cosrev.2020.100311_b160","series-title":"Proceedings of the 13th International Conference on Discovery Science","first-page":"1","article-title":"Sentiment knowledge discovery in Twitter streaming data","author":"Bifet","year":"2010"},{"key":"10.1016\/j.cosrev.2020.100311_b161","series-title":"In Twelfth International AAAI Conference on Web and Social Media","first-page":"676","article-title":"Characterizing and detecting hateful users on twitter","author":"Ribeiro","year":"2018"}],"container-title":["Computer Science Review"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1574013720304111?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1574013720304111?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,27]],"date-time":"2024-05-27T17:13:37Z","timestamp":1716830017000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1574013720304111"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,11]]},"references-count":161,"alternative-id":["S1574013720304111"],"URL":"https:\/\/doi.org\/10.1016\/j.cosrev.2020.100311","relation":{},"ISSN":["1574-0137"],"issn-type":[{"value":"1574-0137","type":"print"}],"subject":[],"published":{"date-parts":[[2020,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Machine learning techniques for hate speech classification of twitter data: State-of-the-art, future challenges and research directions","name":"articletitle","label":"Article Title"},{"value":"Computer Science Review","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cosrev.2020.100311","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"100311"}}