{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:53:24Z","timestamp":1732038804914},"reference-count":92,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,2,1]],"date-time":"2020-02-01T00:00:00Z","timestamp":1580515200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computer Science Review"],"published-print":{"date-parts":[[2020,2]]},"DOI":"10.1016\/j.cosrev.2019.100203","type":"journal-article","created":{"date-parts":[[2019,12,18]],"date-time":"2019-12-18T12:58:52Z","timestamp":1576673932000},"page":"100203","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":126,"special_numbering":"C","title":["Application of deep learning for retinal image analysis: A review"],"prefix":"10.1016","volume":"35","author":[{"given":"Maryam","family":"Badar","sequence":"first","affiliation":[]},{"given":"Muhammad","family":"Haris","sequence":"additional","affiliation":[]},{"given":"Anam","family":"Fatima","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.cosrev.2019.100203_b1","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1016\/j.cmpb.2012.03.009","article-title":"Blood vessel segmentation methodologies in retinal images\u2013a survey","volume":"108","author":"Fraz","year":"2012","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cosrev.2019.100203_b2","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1109\/RBME.2010.2084567","article-title":"Retinal imaging and image analysis","volume":"3","author":"Abr\u00e0moff","year":"2010","journal-title":"IEEE Rev. Biomed. Eng."},{"issue":"2","key":"10.1016\/j.cosrev.2019.100203_b3","doi-asserted-by":"crossref","first-page":"329","DOI":"10.1007\/s00521-015-2059-9","article-title":"Multi-retinal disease classification by reduced deep learning features","volume":"28","author":"Arunkumar","year":"2017","journal-title":"Neural Comput. Appl."},{"issue":"8","key":"10.1016\/j.cosrev.2019.100203_b4","doi-asserted-by":"crossref","first-page":"720","DOI":"10.1016\/j.compmedimag.2008.08.009","article-title":"Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods","volume":"32","author":"Sopharak","year":"2008","journal-title":"Comput. Med. Imaging Graph."},{"issue":"10","key":"10.1016\/j.cosrev.2019.100203_b5","doi-asserted-by":"crossref","first-page":"1236","DOI":"10.1109\/TMI.2002.806290","article-title":"A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina","volume":"21","author":"Walter","year":"2002","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"9","key":"10.1016\/j.cosrev.2019.100203_b6","doi-asserted-by":"crossref","first-page":"2538","DOI":"10.1109\/TBME.2012.2205687","article-title":"An ensemble classification-based approach applied to retinal blood vessel segmentation","volume":"59","author":"Fraz","year":"2012","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"9","key":"10.1016\/j.cosrev.2019.100203_b7","doi-asserted-by":"crossref","first-page":"1230","DOI":"10.1109\/TMI.2008.920619","article-title":"Optimal wavelet transform for the detection of microaneurysms in retina photographs","volume":"27","author":"Quellec","year":"2008","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"1","key":"10.1016\/j.cosrev.2019.100203_b8","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1109\/TMI.2010.2064333","article-title":"A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features","volume":"30","author":"Mar\u00edn","year":"2011","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.cosrev.2019.100203_b9","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1016\/j.preteyeres.2013.10.002","article-title":"Progress on retinal image analysis for age related macular degeneration","volume":"38","author":"Kanagasingam","year":"2014","journal-title":"Progress Retin. Eye Res."},{"key":"10.1016\/j.cosrev.2019.100203_b10","doi-asserted-by":"crossref","unstructured":"I. Sadek, D. Sidib\u00e9, F. Meriaudeau, Automatic discrimination of color retinal images using the bag of words approach, in: Paper presented at the SPIE Medical Imaging, 2015.","DOI":"10.1117\/12.2075824"},{"key":"10.1016\/j.cosrev.2019.100203_b11","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/j.compbiomed.2015.04.026","article-title":"Discrimination of retinal images containing bright lesions using sparse coded features and SVM","volume":"62","author":"Sidib\u00e9","year":"2015","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.cosrev.2019.100203_b12","doi-asserted-by":"crossref","unstructured":"R. Veras, R. Silva, F. Ara\u00fajo, F. Medeiros, SURF descriptor and pattern recognition techniques in automatic identification of pathological retinas, in: Paper Presented at the Intelligent Systems (BRACIS), 2015 Brazilian Conference on, 2015.","DOI":"10.1109\/BRACIS.2015.59"},{"issue":"1","key":"10.1016\/j.cosrev.2019.100203_b13","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1016\/j.preteyeres.2005.07.001","article-title":"Retinal image analysis: Concepts, applications and potential","volume":"25","author":"Patton","year":"2006","journal-title":"Progress Retin. Eye Res."},{"issue":"4","key":"10.1016\/j.cosrev.2019.100203_b14","doi-asserted-by":"crossref","first-page":"494","DOI":"10.1016\/0002-9394(73)90737-X","article-title":"Jan purkinje and the ophthalmoscope","volume":"76","author":"Albert","year":"1973","journal-title":"Am. J. Ophthalmol."},{"issue":"5035","key":"10.1016\/j.cosrev.2019.100203_b15","doi-asserted-by":"crossref","first-page":"1178","DOI":"10.1126\/science.1957169","article-title":"Optical coherence tomography","volume":"254","author":"Huang","year":"1991","journal-title":"Science"},{"issue":"1","key":"10.1016\/j.cosrev.2019.100203_b16","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1111\/j.1442-9071.2008.01812.x","article-title":"Ophthalmic imaging today: An ophthalmic photographer\u2019s viewpoint\u2013a review","volume":"37","author":"Bennett","year":"2009","journal-title":"Clin. Exp. Ophthalmol."},{"issue":"5","key":"10.1016\/j.cosrev.2019.100203_b17","doi-asserted-by":"crossref","first-page":"635","DOI":"10.1007\/s10792-012-9620-7","article-title":"Detection of retinal lesions in diabetic retinopathy: Comparative evaluation of 7-field digital color photography versus red-free photography","volume":"35","author":"Venkatesh","year":"2015","journal-title":"Int. Ophthal."},{"issue":"2","key":"10.1016\/j.cosrev.2019.100203_b18","first-page":"6","article-title":"Stereo fundus photography: Principles and technique","volume":"18","author":"Tyler","year":"1996","journal-title":"J. Ophthalmic Photogr."},{"issue":"3","key":"10.1016\/j.cosrev.2019.100203_b19","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1007\/BF02919416","article-title":"Validity of retinal oxygen saturation analysis: Hyperspectral imaging in visible wavelength with fundus camera and liquid crystal wavelength tunable filter","volume":"14","author":"Hirohara","year":"2007","journal-title":"Opt. Rev."},{"key":"10.1016\/j.cosrev.2019.100203_b20","doi-asserted-by":"crossref","unstructured":"I. Alabboud, G. Muyo, A. Gorman, D. Mordant, A. McNaught, C. Petres, et al. New spectral imaging techniques for blood oximetry in the retina, in: Paper Presented at the European Conference on Biomedical Optics, 2007.","DOI":"10.1117\/12.728535"},{"issue":"7","key":"10.1016\/j.cosrev.2019.100203_b21","doi-asserted-by":"crossref","first-page":"488","DOI":"10.1109\/TBME.1981.324734","article-title":"Scanning laser ophthalmoscope","author":"Webb","year":"1981","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"9","key":"10.1016\/j.cosrev.2019.100203_b22","doi-asserted-by":"crossref","first-page":"405","DOI":"10.1364\/OE.10.000405","article-title":"Adaptive optics scanning laser ophthalmoscopy","volume":"10","author":"Roorda","year":"2002","journal-title":"Opt. Exp."},{"key":"10.1016\/j.cosrev.2019.100203_b23","series-title":"Ophthalmological Imaging and Applications","author":"Ng","year":"2014"},{"issue":"3","key":"10.1016\/j.cosrev.2019.100203_b24","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1097\/00055735-199506000-00005","article-title":"Indocyanine-green angiography","volume":"6","author":"Slakter","year":"1995","journal-title":"Curr. Opin. Ophthalmol."},{"key":"10.1016\/j.cosrev.2019.100203_b25","series-title":"Optical Coherence Tomography: Technology and Applications","author":"Drexler","year":"2015"},{"key":"10.1016\/j.cosrev.2019.100203_b26","series-title":"Ocular Anatomy, Embryology, and Teratology","author":"Jakobiec","year":"1982"},{"issue":"2","key":"10.1016\/j.cosrev.2019.100203_b27","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1016\/j.diabres.2013.11.001","article-title":"Global estimates of undiagnosed diabetes in adults","volume":"103","author":"Beagley","year":"2014","journal-title":"Diabetes Res. Clin. Pract."},{"key":"10.1016\/j.cosrev.2019.100203_b28","doi-asserted-by":"crossref","unstructured":"V. Raman, P. Then, P. Sumari, Proposed retinal abnormality detection and classification approach: Computer aided detection for diabetic retinopathy by machine learning approaches, in: Paper Presented at the Communication Software and Networks (ICCSN), 2016 8th IEEE International Conference on, 2016.","DOI":"10.1109\/ICCSN.2016.7586601"},{"issue":"10","key":"10.1016\/j.cosrev.2019.100203_b29","doi-asserted-by":"crossref","first-page":"1203","DOI":"10.2337\/diab.38.10.1203","article-title":"Pathogenesis of diabetic retinopathy","volume":"38","author":"Engerman","year":"1989","journal-title":"Diabetes"},{"key":"10.1016\/j.cosrev.2019.100203_b30","series-title":"Capillary Dropout in Diabetic Retinopathy Diabetic Retinopathy","first-page":"265","author":"Kowluru","year":"2008"},{"key":"10.1016\/j.cosrev.2019.100203_b31","series-title":"Methods for Evaluating Segmentation and Indexing Techniques Dedicated To Retinal Ophthalmology","article-title":"DRIVE: Digital retinal images for vessel extraction","author":"Niemeijer","year":"2004"},{"issue":"3","key":"10.1016\/j.cosrev.2019.100203_b32","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1109\/42.845178","article-title":"Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response","volume":"19","author":"Hoover","year":"2000","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.cosrev.2019.100203_b33","series-title":"Retinal image archive","author":"ARIA\u00a0Online","year":"2006"},{"key":"10.1016\/j.cosrev.2019.100203_b34","series-title":"Machine Vision and Pattern Recognition Research Group","first-page":"73","article-title":"DIARETDB0: Evaluation database and methodology for diabetic retinopathy algorithms","author":"Kauppi","year":"2006"},{"key":"10.1016\/j.cosrev.2019.100203_b35","unstructured":"R. K\u00e4lvi\u00e4inen, H. Uusitalo, DIARETDB1 diabetic retinopathy database and evaluation protocol, in: Paper Presented at the Medical Image Understanding and Analysis, 2007."},{"issue":"3","key":"10.1016\/j.cosrev.2019.100203_b36","doi-asserted-by":"crossref","first-page":"231","DOI":"10.5566\/ias.1155","article-title":"Feedback on a publicly distributed image database: The Messidor database","volume":"33","author":"Decenci\u00e8re","year":"2014","journal-title":"Image Anal. Stereol."},{"key":"10.1016\/j.cosrev.2019.100203_b37","doi-asserted-by":"crossref","unstructured":"P. Prenta\u0161i\u0107, S. Lon\u010dari\u0107, Z. Vatavuk, G. Ben\u010di\u0107, M. Suba\u0161i\u0107, T. Petkovi\u0107, et al. Diabetic retinopathy image database(DRiDB): A new database for diabetic retinopathy screening programs research, in: Paper Presented at the 2013 8th International Symposium on Image and Signal Processing and Analysis, ISPA, 2013.","DOI":"10.1109\/ISPA.2013.6703830"},{"key":"10.1016\/j.cosrev.2019.100203_b38","series-title":"Clinical Ophthalmology: A Systematic Approach","author":"Kanski","year":"2011"},{"issue":"3","key":"10.1016\/j.cosrev.2019.100203_b39","doi-asserted-by":"crossref","first-page":"497","DOI":"10.1016\/j.ophtha.2008.10.016","article-title":"The Wisconsin Epidemiologic Study of Diabetic Retinopathy XXIII: The twenty-five-year incidence of macular edema in persons with type 1 diabetes","volume":"116","author":"Klein","year":"2009","journal-title":"Ophthalmology"},{"issue":"11","key":"10.1016\/j.cosrev.2019.100203_b40","doi-asserted-by":"crossref","first-page":"1334","DOI":"10.1001\/jamaophthalmol.2014.2854","article-title":"Prevalence of and risk factors for diabetic macular edema in the United States","volume":"132","author":"Varma","year":"2014","journal-title":"JAMA Ophthalmol."},{"issue":"24","key":"10.1016\/j.cosrev.2019.100203_b41","doi-asserted-by":"crossref","first-page":"2606","DOI":"10.1056\/NEJMra0801537","article-title":"Age-related macular degeneration","volume":"358","author":"Jager","year":"2008","journal-title":"N. Engl. J. Med."},{"key":"10.1016\/j.cosrev.2019.100203_b42","series-title":"Age-Related Macular Degeneration: A Comprehensive Textbook","author":"Alfaro","year":"2006"},{"issue":"6","key":"10.1016\/j.cosrev.2019.100203_b43","doi-asserted-by":"crossref","first-page":"515","DOI":"10.1016\/j.recesp.2011.02.014","article-title":"Retinal vascular signs: A window to the heart?","volume":"64","author":"Liew","year":"2011","journal-title":"Rev. Esp. Cardiol. (English Edition)"},{"issue":"3","key":"10.1016\/j.cosrev.2019.100203_b44","doi-asserted-by":"crossref","first-page":"262","DOI":"10.1136\/bjo.2005.081224","article-title":"The number of people with glaucoma worldwide in 2010 and 2020","volume":"90","author":"Quigley","year":"2006","journal-title":"Br. J. Ophthalmol."},{"issue":"59","key":"10.1016\/j.cosrev.2019.100203_b45","first-page":"36","article-title":"How to assess a patient for glaucoma","volume":"19","author":"Thomas","year":"2006","journal-title":"Community Eye Health"},{"key":"10.1016\/j.cosrev.2019.100203_b46","series-title":"Deep Learning","author":"Goodfellow","year":"2016"},{"key":"10.1016\/j.cosrev.2019.100203_b47","series-title":"Behind Deep Blue: Building the Computer that Defeated the World Chess Champion","author":"Hsu","year":"2002"},{"issue":"7553","key":"10.1016\/j.cosrev.2019.100203_b48","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"key":"10.1016\/j.cosrev.2019.100203_b49","unstructured":"P. Angelov, A. Sperduti, Challenges in deep learning, in: Paper Presented at the Proceedings of the 24th European symposium on artificial neural networks, ESANN, 2016."},{"key":"10.1016\/j.cosrev.2019.100203_b50","doi-asserted-by":"crossref","first-page":"708","DOI":"10.1016\/j.neucom.2014.07.059","article-title":"Hierarchical retinal blood vessel segmentation based on feature and ensemble learning","volume":"149","author":"Wang","year":"2015","journal-title":"Neurocomputing"},{"key":"10.1016\/j.cosrev.2019.100203_b51","doi-asserted-by":"crossref","unstructured":"T. Fang, R. Su, L. Xie, Q. Gu, Q. Li, P. Liang, T. Wang, Retinal vessel landmark detection using deep learning and hessian matrix, in: Paper Presented at the Image and Signal Processing (CISP), 2015 8th International Congress on, 2015.","DOI":"10.1109\/CISP.2015.7407910"},{"key":"10.1016\/j.cosrev.2019.100203_b52","doi-asserted-by":"crossref","unstructured":"M. Melin\u0161\u010dak, P. Prenta\u0161i\u0107, S. Lon\u010dari\u0107, Retinal vessel segmentation using deep neural networks, in: Paper Presented at the VISAPP 2015 (10th International Conference on Computer Vision Theory and Applications), 2015.","DOI":"10.5220\/0005313005770582"},{"key":"10.1016\/j.cosrev.2019.100203_b53","doi-asserted-by":"crossref","unstructured":"H. Fu, Y. Xu, S. Lin, D.W.K. Wong, J. Liu, DeepVessel: Retinal vessel segmentation via deep learning and conditional random field, in: Paper presented at the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2016.","DOI":"10.1007\/978-3-319-46723-8_16"},{"issue":"11","key":"10.1016\/j.cosrev.2019.100203_b54","doi-asserted-by":"crossref","first-page":"2369","DOI":"10.1109\/TMI.2016.2546227","article-title":"Segmenting retinal blood vessels with pub _newline?> deep neural networks","volume":"35","author":"Liskowski","year":"2016","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"1","key":"10.1016\/j.cosrev.2019.100203_b55","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1109\/TMI.2015.2457891","article-title":"A cross-modality learning approach for vessel segmentation in retinal images","volume":"35","author":"Li","year":"2016","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.cosrev.2019.100203_b56","doi-asserted-by":"crossref","unstructured":"Z. Yao, Z. Zhang, L.-Q. Xu, Convolutional neural network for retinal blood vessel segmentation, in: Paper Presented at the Computational Intelligence and Design (ISCID), 2016 9th International Symposium on, 2016.","DOI":"10.1109\/ISCID.2016.1100"},{"key":"10.1016\/j.cosrev.2019.100203_b57","doi-asserted-by":"crossref","unstructured":"A. Dasgupta, S. Singh, A fully convolutional neural network based structured prediction approach towards the retinal vessel segmentation, in: Paper Presented at the Biomedical Imaging (ISBI 2017), 2017 IEEE 14th International Symposium on, 2017.","DOI":"10.1109\/ISBI.2017.7950512"},{"key":"10.1016\/j.cosrev.2019.100203_b58","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2017.09.005","article-title":"Automated arteriole and venule classification using deep learning for retinal images from the UK Biobank cohort","author":"Welikala","year":"2017","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.cosrev.2019.100203_b59","doi-asserted-by":"crossref","unstructured":"X. Xu, T. Tan, F. Xu, An improved U-net architecture for simultaneous arteriole and venule segmentation in fundus image, in: Paper presented at the Annual Conference on Medical Image Understanding and Analysis, 2018.","DOI":"10.1007\/978-3-319-95921-4_31"},{"key":"10.1016\/j.cosrev.2019.100203_b60","doi-asserted-by":"crossref","unstructured":"D. Maji, A. Santara, S. Ghosh, D. Sheet, P. Mitra, Deep neural network and random forest hybrid architecture for learning to detect retinal vessels in fundus images, in: Paper Presented at the Engineering in Medicine and Biology Society (EMBC), 2015 37th Annual International Conference of the IEEE, 2015.","DOI":"10.1109\/EMBC.2015.7319030"},{"key":"10.1016\/j.cosrev.2019.100203_b61","doi-asserted-by":"crossref","unstructured":"A. Lahiri, A.G. Roy, D. Sheet, P.K. Biswas, Deep neural ensemble for retinal vessel segmentation in fundus images towards achieving label-free angiography, in: Paper presented at the Engineering in Medicine and Biology Society (EMBC), 2016 IEEE 38th Annual International Conference of the, 2016.","DOI":"10.1109\/EMBC.2016.7590955"},{"key":"10.1016\/j.cosrev.2019.100203_b62","doi-asserted-by":"crossref","first-page":"281","DOI":"10.1016\/j.cmpb.2016.09.018","article-title":"Detection of exudates in fundus photographs using deep neural networks and anatomical landmark detection fusion","volume":"137","author":"Prenta\u0161i\u0107","year":"2016","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.cosrev.2019.100203_b63","series-title":"Fetal, Infant and Ophthalmic Medical Image Analysis","first-page":"210","article-title":"Boosted exudate segmentation in retinal images using residual nets","author":"Abbasi-Sureshjani","year":"2017"},{"issue":"22","key":"10.1016\/j.cosrev.2019.100203_b64","doi-asserted-by":"crossref","first-page":"2402","DOI":"10.1001\/jama.2016.17216","article-title":"Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs","volume":"316","author":"Gulshan","year":"2016","journal-title":"JAMA"},{"key":"10.1016\/j.cosrev.2019.100203_b65","doi-asserted-by":"crossref","unstructured":"K.-K. Maninis, J. Pont-Tuset, P. Arbel\u00e1ez, L. Van\u00a0Gool, Deep retinal image understanding, in: Paper Presented at the International Conference on Medical Image Computing and Computer-Assisted Intervention, 2016.","DOI":"10.1007\/978-3-319-46723-8_17"},{"key":"10.1016\/j.cosrev.2019.100203_b66","doi-asserted-by":"crossref","DOI":"10.1016\/j.jocs.2017.02.006","article-title":"Segmentation of optic disc, fovea and retinal vasculature using a single convolutional neural network","author":"Tan","year":"2017","journal-title":"J. Comput. Sci."},{"key":"10.1016\/j.cosrev.2019.100203_b67","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1016\/j.compmedimag.2016.07.012","article-title":"Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation","volume":"55","author":"Zilly","year":"2017","journal-title":"Comput. Med. Imaging Graph."},{"key":"10.1016\/j.cosrev.2019.100203_b68","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1016\/j.ins.2017.08.050","article-title":"Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network","volume":"420","author":"Tan","year":"2017","journal-title":"Inform. Sci."},{"issue":"1","key":"10.1016\/j.cosrev.2019.100203_b69","doi-asserted-by":"crossref","first-page":"590","DOI":"10.1167\/iovs.17-22721","article-title":"Retinal lesion detection with deep learning using image patches","volume":"59","author":"Lam","year":"2018","journal-title":"Invest. Ophthalmol. Vis. Sci."},{"key":"10.1016\/j.cosrev.2019.100203_b70","doi-asserted-by":"crossref","unstructured":"M. Badar, M. Shahzad, M. Fraz, Simultaneous segmentation of multiple retinal pathologies using fully convolutional deep neural network, in: Paper Presented at the Annual Conference on Medical Image Understanding and Analysis, 2018.","DOI":"10.1007\/978-3-319-95921-4_29"},{"key":"10.1016\/j.cosrev.2019.100203_b71","doi-asserted-by":"crossref","first-page":"200","DOI":"10.1016\/j.procs.2016.07.014","article-title":"Convolutional neural networks for diabetic retinopathy","volume":"90","author":"Pratt","year":"2016","journal-title":"Procedia Comput. Sci."},{"issue":"13","key":"10.1016\/j.cosrev.2019.100203_b72","doi-asserted-by":"crossref","first-page":"5200","DOI":"10.1167\/iovs.16-19964","article-title":"Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learningdeep learning detection of diabetic retinopathy","volume":"57","author":"Abr\u00e0moff","year":"2016","journal-title":"Invest. Ophthalmol. Vis. Sci."},{"issue":"S256","key":"10.1016\/j.cosrev.2019.100203_b73","doi-asserted-by":"crossref","DOI":"10.1111\/j.1755-3768.2016.0635","article-title":"Deep learning approach for diabetic retinopathy screening","volume":"94","author":"Colas","year":"2016","journal-title":"Acta Ophthalmol."},{"key":"10.1016\/j.cosrev.2019.100203_b74","doi-asserted-by":"crossref","DOI":"10.1016\/j.ophtha.2017.02.008","article-title":"Automated identification of diabetic retinopathy using deep learning","author":"Gargeya","year":"2017","journal-title":"Ophthalmology"},{"key":"10.1016\/j.cosrev.2019.100203_b75","series-title":"Deep Learning and Data Labeling for Medical Applications","first-page":"68","article-title":"Automated retinopathy of prematurity case detection with convolutional neural networks","author":"Worrall","year":"2016"},{"key":"10.1016\/j.cosrev.2019.100203_b76","doi-asserted-by":"crossref","unstructured":"P. Burlina, D.E. Freund, N. Joshi, Y. Wolfson, N.M. Bressler, Detection of age-related macular degeneration via deep learning, in: Paper Presented at the Biomedical Imaging (ISBI), 2016 IEEE 13th International Symposium on, 2016.","DOI":"10.1109\/ISBI.2016.7493240"},{"key":"10.1016\/j.cosrev.2019.100203_b77","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.compbiomed.2017.01.018","article-title":"Comparing humans and deep learning performance for grading AMD: A study in using universal deep features and transfer learning for automated AMD analysis","volume":"82","author":"Burlina","year":"2017","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.cosrev.2019.100203_b78","doi-asserted-by":"crossref","DOI":"10.1016\/j.oret.2016.12.009","article-title":"Deep learning is effective for classifying normal versus age-related macular degeneration optical coherence tomography images","author":"Lee","year":"2017","journal-title":"Ophthalmol. Retin."},{"issue":"11","key":"10.1016\/j.cosrev.2019.100203_b79","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0187336","article-title":"Multi-categorical deep learning neural network to classify retinal images: A pilot study employing small database","volume":"12","author":"Choi","year":"2017","journal-title":"PLoS One"},{"key":"10.1016\/j.cosrev.2019.100203_b80","doi-asserted-by":"crossref","unstructured":"S. Xie, Z. Tu, Holistically-nested edge detection, in: Paper Presented at the Proceedings of the IEEE International Conference on Computer Vision, 2015.","DOI":"10.1109\/ICCV.2015.164"},{"key":"10.1016\/j.cosrev.2019.100203_b81","doi-asserted-by":"crossref","unstructured":"T. Walter, J.-C. Klein, Segmentation of color fundus images of the human retina: Detection of the optic disc and the vascular tree using morphological techniques, in: Paper Presented at the International Symposium on Medical Data Analysis, 2001.","DOI":"10.1007\/3-540-45497-7_43"},{"key":"10.1016\/j.cosrev.2019.100203_b82","doi-asserted-by":"crossref","unstructured":"A.F. Frangi, W.J. Niessen, K.L. Vincken, M.A. Viergever, Multiscale vessel enhancement filtering, in: Paper Presented at the International Conference on Medical Image Computing and Computer-Assisted Intervention, 1998.","DOI":"10.1007\/BFb0056195"},{"issue":"1","key":"10.1016\/j.cosrev.2019.100203_b83","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1186\/s41074-017-0023-6","article-title":"Convolutional bag of words for diabetic retinopathy detection from eye fundus images","volume":"9","author":"Costa","year":"2017","journal-title":"IPSJ Trans. Comput. Vis. Appl."},{"key":"10.1016\/j.cosrev.2019.100203_b84","series-title":"Intravascular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of Biomedical Data and Expert Label Synthesis","first-page":"146","article-title":"Training deep convolutional neural networks with active learning for exudate classification in eye fundus images","author":"Ot\u00e1lora","year":"2017"},{"key":"10.1016\/j.cosrev.2019.100203_b85","unstructured":"Y. Nesterov, A method for unconstrained convex minimization problem with the rate of convergence O (1\/k^2), in: Paper Presented at the Doklady AN USSR, 1983."},{"key":"10.1016\/j.cosrev.2019.100203_b86","unstructured":"X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Paper Presented at the Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, 2010."},{"key":"10.1016\/j.cosrev.2019.100203_b87","doi-asserted-by":"crossref","unstructured":"J. Sivaswamy, S. Krishnadas, G.D. Joshi, M. Jain, A.U.S. Tabish, Drishti-gs: Retinal image dataset for optic nerve head (onh) segmentation, in: Paper Presented at the 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), 2014.","DOI":"10.1109\/ISBI.2014.6867807"},{"issue":"12","key":"10.1016\/j.cosrev.2019.100203_b88","doi-asserted-by":"crossref","first-page":"2481","DOI":"10.1109\/TPAMI.2016.2644615","article-title":"Segnet: A deep convolutional encoder\u2013decoder architecture for image segmentation","volume":"39","author":"Badrinarayanan","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.cosrev.2019.100203_b89","doi-asserted-by":"crossref","unstructured":"C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in: Paper Presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.","DOI":"10.1109\/CVPR.2016.308"},{"key":"10.1016\/j.cosrev.2019.100203_b90","unstructured":"G. Dahl, A.-r. Mohamed, G.E. Hinton, Phone recognition with the mean-covariance restricted Boltzmann machine, in: Paper Presented at the Advances in Neural Information Processing Systems, 2010."},{"key":"10.1016\/j.cosrev.2019.100203_b91","doi-asserted-by":"crossref","unstructured":"P. Prenta\u0161i\u0107, S. Lon\u010dari\u0107, Detection of exudates in fundus photographs using convolutional neural networks, in: Paper presented at the Image and Signal Processing and Analysis (ISPA), 2015 9th International Symposium on, 2015.","DOI":"10.1109\/ISPA.2015.7306056"},{"key":"10.1016\/j.cosrev.2019.100203_b92","doi-asserted-by":"crossref","unstructured":"J. Shan, L. Li, A deep learning method for microaneurysm detection in fundus images, in: Paper presented at the Connected Health: Applications, Systems and Engineering Technologies (CHASE), 2016 IEEE First International Conference on, 2016.","DOI":"10.1109\/CHASE.2016.12"}],"container-title":["Computer Science Review"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1574013719301327?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S1574013719301327?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,9,24]],"date-time":"2023-09-24T05:03:05Z","timestamp":1695531785000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S1574013719301327"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,2]]},"references-count":92,"alternative-id":["S1574013719301327"],"URL":"https:\/\/doi.org\/10.1016\/j.cosrev.2019.100203","relation":{},"ISSN":["1574-0137"],"issn-type":[{"value":"1574-0137","type":"print"}],"subject":[],"published":{"date-parts":[[2020,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Application of deep learning for retinal image analysis: A review","name":"articletitle","label":"Article Title"},{"value":"Computer Science Review","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cosrev.2019.100203","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier Inc. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"100203"}}