{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T20:10:38Z","timestamp":1726258238837},"reference-count":72,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,5,24]],"date-time":"2023-05-24T00:00:00Z","timestamp":1684886400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers & Security"],"published-print":{"date-parts":[[2023,8]]},"DOI":"10.1016\/j.cose.2023.103299","type":"journal-article","created":{"date-parts":[[2023,5,20]],"date-time":"2023-05-20T15:00:42Z","timestamp":1684594842000},"page":"103299","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":19,"special_numbering":"C","title":["Clustered federated learning architecture for network anomaly detection in large scale heterogeneous IoT networks"],"prefix":"10.1016","volume":"131","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0277-4432","authenticated-orcid":false,"given":"Xabier","family":"S\u00e1ez-de-C\u00e1mara","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5555-9712","authenticated-orcid":false,"given":"Jose Luis","family":"Flores","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7878-3306","authenticated-orcid":false,"given":"Crist\u00f3bal","family":"Arellano","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5836-4198","authenticated-orcid":false,"given":"Aitor","family":"Urbieta","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3720-6048","authenticated-orcid":false,"given":"Urko","family":"Zurutuza","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.cose.2023.103299_sbref0001","series-title":"26th USENIX Security Symposium (USENIX Security 17)","first-page":"1093","article-title":"Understanding the mirai botnet","author":"Antonakakis","year":"2017"},{"key":"10.1016\/j.cose.2023.103299_bib0002","series-title":"Techreport","article-title":"K-means++: The Advantages of Careful Seeding","author":"Arthur","year":"2006"},{"key":"10.1016\/j.cose.2023.103299_bib0003","doi-asserted-by":"crossref","first-page":"117734","DOI":"10.1109\/ACCESS.2021.3107337","article-title":"An ensemble multi-view federated learning intrusion detection for IoT","volume":"9","author":"Attota","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.cose.2023.103299_sbref0004","series-title":"Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics","first-page":"2938","article-title":"How to backdoor federated learning","author":"Bagdasaryan","year":"2020"},{"key":"10.1016\/j.cose.2023.103299_bib0005","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.compind.2018.04.015","article-title":"The industrial internet of things (IIoT): an analysis framework","volume":"101","author":"Boyes","year":"2018","journal-title":"Comput. Ind."},{"key":"10.1016\/j.cose.2023.103299_bib0006","series-title":"2020 International Joint Conference on Neural Networks (IJCNN)","first-page":"1","article-title":"Federated learning with hierarchical clustering of local updates to improve training on non-iid data","author":"Briggs","year":"2020"},{"issue":"4","key":"10.1016\/j.cose.2023.103299_bib0007","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1109\/MIS.2020.2988604","article-title":"FedHealth: a federated transfer learning framework for wearable healthcare","volume":"35","author":"Chen","year":"2020","journal-title":"IEEE Intell. Syst."},{"key":"10.1016\/j.cose.2023.103299_bib0008","series-title":"IoT Malware: Comprehensive Survey, Analysis Framework and Case Studies","author":"Costin","year":"2018"},{"key":"10.1016\/j.cose.2023.103299_bib0009","series-title":"BCP","article-title":"Internet Assigned Numbers Authority (IANA) Procedures for the Management of the Service Name and Transport Protocol Port Number Registry","author":"Cotton","year":"2011"},{"issue":"2","key":"10.1016\/j.cose.2023.103299_bib0010","doi-asserted-by":"crossref","first-page":"224","DOI":"10.1109\/TPAMI.1979.4766909","article-title":"A cluster separation measure","volume":"PAMI-1","author":"Davies","year":"1979","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.cose.2023.103299_bib0011","series-title":"2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking (ISPA\/BDCloud\/SocialCom\/SustainCom)","first-page":"228","article-title":"Fedgroup: efficient federated learning via decomposed similarity-based clustering","author":"Duan","year":"2021"},{"issue":"11","key":"10.1016\/j.cose.2023.103299_bib0012","first-page":"2661","article-title":"Flexible clustered federated learning for client-level data distribution shift","volume":"33","author":"Duan","year":"2022","journal-title":"IEEE Trans. Parallel Distrib. Syst."},{"key":"10.1016\/j.cose.2023.103299_bib0013","unstructured":"European Parliament and Council of the European Union, 2016. Regulation (EU) 2016\/679 of the european parliament and of the council of 27 april 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing directive 95\/46\/EC (general data protection regulation). Accessed 2023\/02\/07. https:\/\/eur-lex.europa.eu\/eli\/reg\/2016\/679."},{"key":"10.1016\/j.cose.2023.103299_bib0014","article-title":"Deep learning for cyber security intrusion detection: approaches, datasets, and comparative study","volume":"50","author":"Ferrag","year":"2020","journal-title":"J. Inf. Secur. Appl."},{"key":"10.1016\/j.cose.2023.103299_bib0015","unstructured":"Gamblin, J., 2023. Leaked mirai source code for research\/ioc development purposes. Accessed 2023\/02\/07, https:\/\/github.com\/jgamblin\/Mirai-Source-Code."},{"key":"10.1016\/j.cose.2023.103299_sbref0014","series-title":"Advances in Neural Information Processing Systems","first-page":"19586","article-title":"An efficient framework for clustered federated learning","author":"Ghosh","year":"2020"},{"key":"10.1016\/j.cose.2023.103299_bib0017","unstructured":"Ghosh, A., Hong, J., Yin, D., Ramchandran, K., 2019. Robust federated learning in a heterogeneous environment. CoRR abs\/1906.06629http:\/\/arxiv.org\/abs\/1906.06629."},{"key":"10.1016\/j.cose.2023.103299_bib0018","unstructured":"Grossmann, J., et\u00a0al., 2023. Graphical network simulator 3. Accessed 2023\/02\/07, https:\/\/www.gns3.com\/."},{"issue":"11","key":"10.1016\/j.cose.2023.103299_bib0019","first-page":"2701","article-title":"Lightfed: an efficient and secure federated edge learning system on model splitting","volume":"33","author":"Guo","year":"2022","journal-title":"IEEE Trans. Parallel Distrib. Syst."},{"key":"10.1016\/j.cose.2023.103299_bib0020","series-title":"Proceedings 2001\u00a0IEEE International Conference on Data Mining","first-page":"187","article-title":"Clustering validity assessment: finding the optimal partitioning of a data set","author":"Halkidi","year":"2001"},{"key":"10.1016\/j.cose.2023.103299_bib0021","doi-asserted-by":"crossref","first-page":"64","DOI":"10.1016\/j.jpdc.2022.04.021","article-title":"Cohort-based federated learning services for industrial collaboration on the edge","volume":"167","author":"Hiessl","year":"2022","journal-title":"J. Parallel Distrib. Comput."},{"key":"10.1016\/j.cose.2023.103299_bib0022","doi-asserted-by":"crossref","first-page":"103291","DOI":"10.1016\/j.jbi.2019.103291","article-title":"Patient clustering improves efficiency of federated machine learning to predict mortality and hospital stay time using distributed electronic medical records","volume":"99","author":"Huang","year":"2019","journal-title":"J. Biomed. Inform."},{"issue":"2","key":"10.1016\/j.cose.2023.103299_bib0023","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1109\/MSEC.2018.2888780","article-title":"The internet of things promises new benefits and risks a systematic analysis of adoption dynamics of IoT products","volume":"17","author":"Jalali","year":"2019","journal-title":"IEEE Secur. Privacy"},{"key":"10.1016\/j.cose.2023.103299_bib0024","unstructured":"Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., D\u2019Oliveira, R. G. L., Rouayheb, S. E., Evans, D., Gardner, J., Garrett, Z., Gasc\u00f3n, A., Ghazi, B., Gibbons, P. B., Gruteser, M., Harchaoui, Z., He, C., He, L., Huo, Z., Hutchinson, B., Hsu, J., Jaggi, M., Javidi, T., Joshi, G., Khodak, M., Kone\u010dn\u00fd, J., Korolova, A., Koushanfar, F., Koyejo, S., Lepoint, T., Liu, Y., Mittal, P., Mohri, M., Nock, R., \u00d6zg\u00fcr, A., Pagh, R., Raykova, M., Qi, H., Ramage, D., Raskar, R., Song, D., Song, W., Stich, S. U., Sun, Z., Suresh, A. T., Tram\u00e8r, F., Vepakomma, P., Wang, J., Xiong, L., Xu, Z., Yang, Q., Yu, F. X., Yu, H., Zhao, S., 2019. Advances and open problems in federated learning. arXiv:1912.04977http:\/\/arxiv.org\/abs\/1912.04977."},{"key":"10.1016\/j.cose.2023.103299_bib0025","series-title":"Botnets: Architectures, Countermeasures, and Challenges","author":"Kambourakis","year":"2019"},{"key":"10.1016\/j.cose.2023.103299_bib0026","series-title":"MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM)","first-page":"267","article-title":"The mirai botnet and the IoT zombie armies","author":"Kambourakis","year":"2017"},{"issue":"20","key":"10.1016\/j.cose.2023.103299_bib0027","doi-asserted-by":"crossref","DOI":"10.3390\/s21206743","article-title":"IDS for industrial applications: a federated learning approach with active personalization","volume":"21","author":"Kelli","year":"2021","journal-title":"Sensors"},{"key":"10.1016\/j.cose.2023.103299_bib0028","unstructured":"Kone\u010dn\u00fd, J., McMahan, H. B., Yu, F. X., Richt\u00e1rik, P., Suresh, A. T., Bacon, D., 2016. Federated learning: strategies for improving communication efficiency. arXiv:1610.05492http:\/\/arxiv.org\/abs\/1610.05492."},{"issue":"8","key":"10.1016\/j.cose.2023.103299_bib0029","doi-asserted-by":"crossref","first-page":"5615","DOI":"10.1109\/TII.2020.3023430","article-title":"DeepFed: federated deep learning for intrusion detection in industrial cyber-physical systems","volume":"17","author":"Li","year":"2021","journal-title":"IEEE Trans. Ind. Inf."},{"issue":"18","key":"10.1016\/j.cose.2023.103299_bib0030","doi-asserted-by":"crossref","first-page":"17844","DOI":"10.1109\/JIOT.2022.3161943","article-title":"Data heterogeneity-robust federated learning via group client selection in industrial IoT","volume":"9","author":"Li","year":"2022","journal-title":"IEEE Internet Things J."},{"issue":"8","key":"10.1016\/j.cose.2023.103299_bib0031","doi-asserted-by":"crossref","first-page":"6348","DOI":"10.1109\/JIOT.2020.3011726","article-title":"Deep anomaly detection for time-series data in industrial IoT: A Communication-Efficient on-Device federated learning approach","volume":"8","author":"Liu","year":"2021","journal-title":"IEEE Internet Things J."},{"key":"10.1016\/j.cose.2023.103299_bib0032","series-title":"2010 IEEE International Conference on Data Mining","first-page":"911","article-title":"Understanding of internal clustering validation measures","author":"Liu","year":"2010"},{"issue":"5, SI","key":"10.1016\/j.cose.2023.103299_bib0033","doi-asserted-by":"crossref","first-page":"1039","DOI":"10.1109\/JPROC.2015.2512235","article-title":"The cybersecurity landscape in industrial control systems","volume":"104","author":"McLaughlin","year":"2016","journal-title":"Proc. IEEE"},{"key":"10.1016\/j.cose.2023.103299_sbref0028","series-title":"Proceedings of the 20th International Conference on Artificial Intelligence and Statistics","first-page":"1273","article-title":"Communication-efficient learning of deep networks from decentralized data","author":"McMahan","year":"2017"},{"issue":"3","key":"10.1016\/j.cose.2023.103299_bib0035","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1109\/MPRV.2018.03367731","article-title":"N-BaIoT\u2014network-based detection of IoT botnet attacks using deep autoencoders","volume":"17","author":"Meidan","year":"2018","journal-title":"IEEE Pervasive Comput."},{"issue":"5","key":"10.1016\/j.cose.2023.103299_bib0036","doi-asserted-by":"crossref","first-page":"8182","DOI":"10.1109\/JIOT.2019.2935189","article-title":"IoT: internet of threats? A survey of practical security vulnerabilities in real IoT devices","volume":"6","author":"Meneghello","year":"2019","journal-title":"IEEE Internet Things J."},{"issue":"1","key":"10.1016\/j.cose.2023.103299_bib0037","first-page":"1","article-title":"Towards a definition of the internet of things (IoT)","volume":"1","author":"Minerva","year":"2015","journal-title":"IEEE Internet Initiat."},{"key":"10.1016\/j.cose.2023.103299_bib0038","unstructured":"Mirsky, Y., 2023. Python implementation of kitsune. Accessed 2023\/02\/07, https:\/\/github.com\/ymirsky\/Kitsune-py."},{"key":"10.1016\/j.cose.2023.103299_sbref0032","series-title":"25th Annual Network and Distributed System Security Symposium, NDSS 2018, San Diego, California, USA, February 18\u201321, 2018","article-title":"Kitsune: an ensemble of autoencoders for online network intrusion detection","author":"Mirsky","year":"2018"},{"key":"10.1016\/j.cose.2023.103299_bib0040","article-title":"Federated learning-based anomaly detection for IoTsecurity attacks","author":"Mothukuri","year":"2021","journal-title":"IEEE Internet Things J."},{"issue":"3","key":"10.1016\/j.cose.2023.103299_bib0041","doi-asserted-by":"crossref","first-page":"2702","DOI":"10.1109\/COMST.2019.2910750","article-title":"Demystifying IoT security: an exhaustive survey on IoT vulnerabilities and a first empirical look on internet-scale IoTexploitations","volume":"21","author":"Neshenko","year":"2019","journal-title":"IEEE Commun. Surv. Tutor."},{"key":"10.1016\/j.cose.2023.103299_sbref0035","series-title":"2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)","first-page":"756","article-title":"DIoT: a federated self-learning anomaly detection system for IoT","author":"Nguyen","year":"2019"},{"key":"10.1016\/j.cose.2023.103299_sbref0036","series-title":"Advances in Neural Information Processing Systems 32","first-page":"8024","article-title":"Pytorch: an imperative style, high-performance deep learning library","author":"Paszke","year":"2019"},{"key":"10.1016\/j.cose.2023.103299_bib0044","first-page":"2825","article-title":"Scikit-learn: machine learning in Python","volume":"12","author":"Pedregosa","year":"2011","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.cose.2023.103299_bib0045","first-page":"1","article-title":"Federated deep learning for zero-day botnet attack detection in IoT edge devices","author":"Popoola","year":"2021","journal-title":"IEEE Internet Things J."},{"key":"10.1016\/j.cose.2023.103299_bib0046","series-title":"2021 International Conference on Electrical, Communication, and Computer Engineering (ICECCE)","first-page":"1","article-title":"Federated learning-based network intrusion detection with a feature selection approach","author":"Qin","year":"2021"},{"issue":"6","key":"10.1016\/j.cose.2023.103299_bib0047","doi-asserted-by":"crossref","first-page":"310","DOI":"10.1109\/MNET.011.2000286","article-title":"Internet of things intrusion detection: centralized, on-device, or federated learning?","volume":"34","author":"Rahman","year":"2020","journal-title":"IEEE Netw."},{"key":"10.1016\/j.cose.2023.103299_sbref0041","series-title":"9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3\u20137, 2021","article-title":"Adaptive federated optimization","author":"Reddi","year":"2021"},{"key":"10.1016\/j.cose.2023.103299_bib0049","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1016\/j.future.2019.04.020","article-title":"The role of big data analytics in industrial internet of things","volume":"99","author":"Rehman","year":"2019","journal-title":"Future Gener. Comput. Syst."},{"key":"10.1016\/j.cose.2023.103299_bib0050","unstructured":"Rey, V., S\u00e1nchez, P. M. S., Celdr\u00e1n, A. H., Bovet, G., Jaggi, M., 2021. Federated learning for malware detection in IoTdevices. CoRR abs\/2104.09994https:\/\/arxiv.org\/abs\/2104.09994."},{"key":"10.1016\/j.cose.2023.103299_bib0051","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/0377-0427(87)90125-7","article-title":"Silhouettes: a graphical aid to the interpretation and validation of cluster analysis","volume":"20","author":"Rousseeuw","year":"1987","journal-title":"J. Comput. Appl. Math."},{"key":"10.1016\/j.cose.2023.103299_bib0052","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence","first-page":"8124","article-title":"Fedsoft: soft clustered federated learning with proximal local updating","volume":"vol. 36","author":"Ruan","year":"2022"},{"key":"10.1016\/j.cose.2023.103299_bib0053","series-title":"2021 10th Mediterranean Conference on Embedded Computing (MECO)","first-page":"1","article-title":"Hierarchical federated learning for collaborative ids in IoT applications","author":"Saadat","year":"2021"},{"key":"10.1016\/j.cose.2023.103299_bib0054","series-title":"2015 52nd ACM\/EDAC\/IEEE Design Automation Conference (DAC), 52nd ACM\/EDAC\/IEEE Design Automation Conference (DAC), New York, NY, JUN 08\u201312, 2015","article-title":"Security and privacy challenges in industrial internet of things","author":"Sadeghi","year":"2015"},{"key":"10.1016\/j.cose.2023.103299_bib0055","unstructured":"Sanfilippo, S., 2023. hping network tool. Accessed 2023\/02\/07, https:\/\/github.com\/antirez\/hping."},{"key":"10.1016\/j.cose.2023.103299_bib0056","first-page":"1","article-title":"Clustered federated learning: model-agnostic distributed multitask optimization under privacy constraints","author":"Sattler","year":"2020","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.cose.2023.103299_bib0057","series-title":"2019 28th International Conference on Computer Communication and Networks, ICCCN","first-page":"1","article-title":"Attack detection using federated learning in medical cyber-physical systems","author":"Schneble","year":"2019"},{"issue":"11","key":"10.1016\/j.cose.2023.103299_bib0058","doi-asserted-by":"crossref","first-page":"4724","DOI":"10.1109\/TII.2018.2852491","article-title":"Industrial internet of things: challenges, opportunities, and directions","volume":"14","author":"Sisinni","year":"2018","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.cose.2023.103299_bib0059","first-page":"1","article-title":"Gotham testbed: a reproducible IoT testbed for security experiments and dataset generation","author":"S\u00e1ez-de-C\u00e1mara","year":"2023","journal-title":"IEEE Trans. Dependable Secure Comput."},{"key":"10.1016\/j.cose.2023.103299_bib0060","first-page":"1","article-title":"Towards personalized federated learning","author":"Tan","year":"2022","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"1","key":"10.1016\/j.cose.2023.103299_sbref0052","article-title":"GNU parallel: the command-line power tool","volume":"36","author":"Tange","year":"2011","journal-title":"Login Usenix Mag."},{"key":"10.1016\/j.cose.2023.103299_bib0062","unstructured":"Tuyl, R. V., 2023. Merlin is a cross-platform post-exploitation http\/2 command & control server and agent written in golang. Accessed 2023\/02\/07, https:\/\/github.com\/Ne0nd0g\/merlin."},{"key":"10.1016\/j.cose.2023.103299_sbref0053","series-title":"Research in Attacks, Intrusions, and Defenses, RAID 2018","first-page":"556","article-title":"Before toasters rise up: a view into the emerging IoT threat landscape","volume":"vol. 11050","author":"Vervier","year":"2018"},{"key":"10.1016\/j.cose.2023.103299_bib0064","unstructured":"Wang, J., Charles, Z., Xu, Z., Joshi, G., McMahan, H. B., y Arcas, B. A., Al-Shedivat, M., Andrew, G., Avestimehr, S., Daly, K., Data, D., Diggavi, S. N., Eichner, H., Gadhikar, A., Garrett, Z., Girgis, A. M., Hanzely, F., Hard, A., He, C., Horvath, S., Huo, Z., Ingerman, A., Jaggi, M., Javidi, T., Kairouz, P., Kale, S., Karimireddy, S. P., Kone\u010dn\u00fd, J., Koyejo, S., Li, T., Liu, L., Mohri, M., Qi, H., Reddi, S. J., Richt\u00e1rik, P., Singhal, K., Smith, V., Soltanolkotabi, M., Song, W., Suresh, A. T., Stich, S. U., Talwalkar, A., Wang, H., Woodworth, B. E., Wu, S., Yu, F. X., Yuan, H., Zaheer, M., Zhang, M., Zhang, T., Zheng, C., Zhu, C., Zhu, W., 2021a. A field guide to federated optimization. arXiv:2107.06917https:\/\/arxiv.org\/abs\/2107.06917."},{"key":"10.1016\/j.cose.2023.103299_bib0065","first-page":"1","article-title":"Towards accurate anomaly detection in industrial internet-of-things using hierarchical federated learning","author":"Wang","year":"2021","journal-title":"IEEE Internet Things J."},{"issue":"2","key":"10.1016\/j.cose.2023.103299_bib0066","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1109\/MNET.011.2000340","article-title":"Federated learning empowered end-edge-cloud cooperation for 5G hetnet security","volume":"35","author":"Wei","year":"2021","journal-title":"IEEE Netw."},{"key":"10.1016\/j.cose.2023.103299_bib0067","unstructured":"Xie, M., Long, G., Shen, T., Zhou, T., Wang, X., Jiang, J., Zhang, C., 2021. Multi-center federated learning. arXiv:2108.08647https:\/\/arxiv.org\/abs\/2108.08647."},{"key":"10.1016\/j.cose.2023.103299_bib0068","doi-asserted-by":"crossref","first-page":"238","DOI":"10.1016\/j.future.2022.10.013","article-title":"Uwpee: using uav and wavelet packet energy entropy to predict traffic-based attacks under limited communication, computing and caching for 6g wireless systems","volume":"140","author":"Xie","year":"2023","journal-title":"Future Gener. Comput. Syst."},{"key":"10.1016\/j.cose.2023.103299_bib0069","doi-asserted-by":"crossref","first-page":"6900","DOI":"10.1109\/ACCESS.2017.2778504","article-title":"A survey on the edge computing for the internet of things","volume":"6","author":"Yu","year":"2018","journal-title":"IEEE Access"},{"issue":"5","key":"10.1016\/j.cose.2023.103299_bib0070","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1109\/MNET.001.1800478","article-title":"Serious challenges and potential solutions for the industrial internet of things with edge intelligence","volume":"33","author":"Zhang","year":"2019","journal-title":"IEEE Netw."},{"key":"10.1016\/j.cose.2023.103299_sbref0059","series-title":"SoICT 2019: Proceedings of the Tenth International Symposium on Information and Communication Technology","first-page":"273","article-title":"Multi-task network anomaly detection using federated learning","author":"Zhao","year":"2019"},{"key":"10.1016\/j.cose.2023.103299_bib0072","series-title":"Proceedings of the 1st ACM Workshop on Workshop on AISec","first-page":"61","article-title":"A data mining approach for analysis of worm activity through automatic signature generation","author":"Zurutuza","year":"2008"}],"container-title":["Computers & Security"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167404823002092?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0167404823002092?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,3,29]],"date-time":"2024-03-29T00:56:08Z","timestamp":1711673768000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0167404823002092"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8]]},"references-count":72,"alternative-id":["S0167404823002092"],"URL":"https:\/\/doi.org\/10.1016\/j.cose.2023.103299","relation":{},"ISSN":["0167-4048"],"issn-type":[{"value":"0167-4048","type":"print"}],"subject":[],"published":{"date-parts":[[2023,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Clustered federated learning architecture for network anomaly detection in large scale heterogeneous IoT networks","name":"articletitle","label":"Article Title"},{"value":"Computers & Security","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.cose.2023.103299","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Authors. Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"103299"}}