{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,5,1]],"date-time":"2025-05-01T09:06:48Z","timestamp":1746090408689},"reference-count":52,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,3,1]],"date-time":"2020-03-01T00:00:00Z","timestamp":1583020800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"name":"Shenzhen Municipal Government","award":["KQTD2016112809330877","GJHZ20180926165402083"]}],"content-domain":{"domain":["clinicalkey.jp","clinicalkey.com","clinicalkey.es","clinicalkey.com.au","clinicalkey.fr","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computerized Medical Imaging and Graphics"],"published-print":{"date-parts":[[2020,3]]},"DOI":"10.1016\/j.compmedimag.2019.101688","type":"journal-article","created":{"date-parts":[[2019,12,28]],"date-time":"2019-12-28T16:28:25Z","timestamp":1577550505000},"page":"101688","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":70,"special_numbering":"C","title":["Learning tree-structured representation for 3D coronary artery segmentation"],"prefix":"10.1016","volume":"80","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2108-5341","authenticated-orcid":false,"given":"Bin","family":"Kong","sequence":"first","affiliation":[]},{"given":"Xin","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Junjie","family":"Bai","sequence":"additional","affiliation":[]},{"given":"Yi","family":"Lu","sequence":"additional","affiliation":[]},{"given":"Feng","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Kunlin","family":"Cao","sequence":"additional","affiliation":[]},{"given":"Jun","family":"Xia","sequence":"additional","affiliation":[]},{"given":"Qi","family":"Song","sequence":"additional","affiliation":[]},{"given":"Youbing","family":"Yin","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"12","key":"10.1016\/j.compmedimag.2019.101688_bib0005","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1161\/CIR.0000000000000558","article-title":"Heart disease and stroke statistics-2018 update: a report from the American Heart Association","volume":"137","author":"Benjamin","year":"2018","journal-title":"Circulation"},{"issue":"2","key":"10.1016\/j.compmedimag.2019.101688_bib0010","doi-asserted-by":"crossref","first-page":"229","DOI":"10.2217\/iim.12.13","article-title":"Ct artifacts: causes and reduction techniques","volume":"4","author":"Boas","year":"2012","journal-title":"Imaging Med."},{"key":"10.1016\/j.compmedimag.2019.101688_bib0015","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.media.2016.11.001","article-title":"Improving airway segmentation in computed tomography using leak detection with convolutional networks","volume":"36","author":"Charbonnier","year":"2017","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compmedimag.2019.101688_bib0020","article-title":"Automatic coronary artery lumen segmentation in computed tomography angiography using paired multi-scale 3d cnn","author":"Chen","year":"2018","journal-title":"Proc. SPIE-Bio. Appl. Mol. Struct. Funct. Imag., Vol. 10578"},{"key":"10.1016\/j.compmedimag.2019.101688_bib0025","first-page":"424","article-title":"3d u-net: learning dense volumetric segmentation from sparse annotation","author":"\u00c7i\u00e7ek","year":"2016","journal-title":"Proc. Int. Conf. Med. Image Comput. Comput. Assist. Intervent."},{"key":"10.1016\/j.compmedimag.2019.101688_bib0030","first-page":"1724","article-title":"Learning phrase representations using rnn encoder-decoder for statistical machine translation","author":"Cho","year":"2014","journal-title":"Proc. Annu. Meeting Assoc. Comput. Linguistics and Int. Joint Conf. Natural Lang. Proc."},{"key":"10.1016\/j.compmedimag.2019.101688_bib0035","article-title":"Empirical evaluation of gated recurrent neural networks on sequence modeling","author":"Chung","year":"2014","journal-title":"Adv. Neural Inf. Process. Syst. Workshop"},{"key":"10.1016\/j.compmedimag.2019.101688_bib0040","first-page":"691","article-title":"Unsupervised cross-modality domain adaptation of convnets for biomedical image segmentations with adversarial loss","author":"Dou","year":"2018","journal-title":"Proc. Int. Joint Conf. Artif. Intell."},{"key":"10.1016\/j.compmedimag.2019.101688_bib0045","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.media.2017.01.004","article-title":"Robust estimation of carotid artery wall motion using the elasticity-based state-space approach","volume":"37","author":"Gao","year":"2017","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compmedimag.2019.101688_bib0050","article-title":"Automatic segmentation of coronary tree in CT angiography images","author":"Gao","year":"2017","journal-title":"Int. J. Adapt. Control Signal Process."},{"key":"10.1016\/j.compmedimag.2019.101688_bib0055","first-page":"441","article-title":"Deepcenterline: a multi-task fully convolutional network for centerline extraction","author":"Guo","year":"2019","journal-title":"Inf. Process. Med. Imaging"},{"key":"10.1016\/j.compmedimag.2019.101688_bib0060","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/j.compmedimag.2018.08.010","article-title":"Deep learning nuclei detection: a simple approach can deliver state-of-the-art results","volume":"70","author":"H\u00f6fener","year":"2018","journal-title":"Comput. Med. Imaging Graph."},{"key":"10.1016\/j.compmedimag.2019.101688_bib0065","first-page":"608","article-title":"Coronary artery segmentation by deep learning neural networks on computed tomographic coronary angiographic images","author":"Huang","year":"2018","journal-title":"Conf. Proc. IEEE Eng. Med. Biol. Soc."},{"key":"10.1016\/j.compmedimag.2019.101688_bib0070","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.compmedimag.2018.04.005","article-title":"Retinal blood vessel segmentation using fully convolutional network with transfer learning","volume":"68","author":"Jiang","year":"2018","journal-title":"Comput. Med. Imaging Graph."},{"key":"10.1016\/j.compmedimag.2019.101688_bib0075","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1007\/978-3-319-67389-9_17","article-title":"3d convolutional neural networks with graph refinement for airway segmentation using incomplete data labels","author":"Jin","year":"2017","journal-title":"Mach. Learn. Med. Imag. Workshop"},{"key":"10.1016\/j.compmedimag.2019.101688_bib0080","article-title":"A method for stochastic optimization","author":"Kingma","year":"2015","journal-title":"Int. Conf. Learn. Represent."},{"key":"10.1016\/j.compmedimag.2019.101688_bib0085","first-page":"264","article-title":"Recognizing end-diastole and end-systole frames via deep temporal regression network","author":"Kong","year":"2016","journal-title":"Proc. Int. Conf. Med. Image Comput. Comput. Assist. Intervent."},{"key":"10.1016\/j.compmedimag.2019.101688_bib0090","first-page":"236","article-title":"Cancer metastasis detection via spatially structured deep network","author":"Kong","year":"2017","journal-title":"Proc. Int. Conf. Inf. Process. Med. Imaging"},{"key":"10.1016\/j.compmedimag.2019.101688_bib0095","series-title":"Proc. Int. Conf. Med. Image Comput. Comput. Assist. Intervent.","first-page":"156","article-title":"Invasive cancer detection utilizing compressed convolutional neural network and transfer learning","author":"Kong","year":"2018"},{"issue":"6","key":"10.1016\/j.compmedimag.2019.101688_bib0100","doi-asserted-by":"crossref","first-page":"819","DOI":"10.1016\/j.media.2009.07.011","article-title":"A review of 3d vessel lumen segmentation techniques: models, features and extraction schemes","volume":"13","author":"Lesage","year":"2009","journal-title":"Med. Image Anal."},{"issue":"C","key":"10.1016\/j.compmedimag.2019.101688_bib0105","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1016\/j.cviu.2015.11.009","article-title":"Adaptive particle filtering for coronary artery segmentation from 3d CT angiograms","volume":"151","author":"Lesage","year":"2016","journal-title":"Comput. Vis. Image Underst."},{"issue":"9","key":"10.1016\/j.compmedimag.2019.101688_bib0110","doi-asserted-by":"crossref","first-page":"1213","DOI":"10.1109\/TMI.2007.903696","article-title":"Vessels as 4-d curves: global minimal 4-d paths to extract 3-d tubular surfaces and centerlines","volume":"26","author":"Li","year":"2007","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.compmedimag.2019.101688_bib0115","article-title":"CFEA: collaborative feature ensembling adaptation for domain adaptation in unsupervised optic disc and cup segmentation","author":"Liu","year":"2019","journal-title":"Proc. Int. Conf. Med. Image Comput. Comput. Assist. Intervent."},{"key":"10.1016\/j.compmedimag.2019.101688_bib0120","first-page":"289","article-title":"Hierarchical question-image co-attention for visual question answering","author":"Lu","year":"2016","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.compmedimag.2019.101688_bib0125","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1016\/j.compmedimag.2018.10.005","article-title":"Image super-resolution using progressive generative adversarial networks for medical image analysis","volume":"71","author":"Mahapatra","year":"2019","journal-title":"Comput. Med. Imaging Graph."},{"key":"10.1016\/j.compmedimag.2019.101688_bib0130","first-page":"565","article-title":"V-net: fully convolutional neural networks for volumetric medical image segmentation","author":"Milletari","year":"2016","journal-title":"International Conference on 3D Vision"},{"issue":"12","key":"10.1016\/j.compmedimag.2019.101688_bib0135","doi-asserted-by":"crossref","first-page":"1611","DOI":"10.1093\/oxfordjournals.eurheartj.a060113","article-title":"Prognosis after recovery from myocardial infarction: the relative importance of cardiac dilatation and coronary stenoses","volume":"13","author":"Norris","year":"1992","journal-title":"Eur. Heart J."},{"key":"10.1016\/j.compmedimag.2019.101688_bib0140","first-page":"1310","article-title":"On the difficulty of training recurrent neural networks","author":"Pascanu","year":"2013","journal-title":"Proc. Int. Conf. Mach. Learn."},{"key":"10.1016\/j.compmedimag.2019.101688_bib0145","doi-asserted-by":"crossref","DOI":"10.1016\/j.neuroimage.2019.03.026","article-title":"Unsupervised domain adaptation for medical imaging segmentation with self-ensembling","author":"Perone","year":"2019","journal-title":"NeuroImage"},{"key":"10.1016\/j.compmedimag.2019.101688_bib0150","first-page":"481","article-title":"Multiscale medialness for robust segmentation of 3d tubular structures","author":"Pock","year":"2005","journal-title":"Image Anal., Vol. 2005"},{"key":"10.1016\/j.compmedimag.2019.101688_bib0155","first-page":"234","article-title":"U-net: convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015","journal-title":"Proc. Int. Conf. Med. Image Comput. Comput. Assist. Intervent."},{"key":"10.1016\/j.compmedimag.2019.101688_bib0160","doi-asserted-by":"crossref","first-page":"42826","DOI":"10.1109\/ACCESS.2019.2908039","article-title":"Coronary arteries segmentation based on 3d FCN with attention gate and level set function","volume":"7","author":"Shen","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.compmedimag.2019.101688_bib0165","first-page":"5617","article-title":"Deep learning for precipitation nowcasting: a benchmark and a new model","author":"Shi","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"1","key":"10.1016\/j.compmedimag.2019.101688_bib0170","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1023\/A:1010656618835","article-title":"Highly automated segmentation of arterial and venous trees from three-dimensional magnetic resonance angiography (MRA)","volume":"17","author":"Stefancik","year":"2001","journal-title":"Int. J. Cardiovasc. Imaging"},{"key":"10.1016\/j.compmedimag.2019.101688_bib0175","first-page":"2024","article-title":"Shortest paths with curvature and torsion","author":"Strandmark","year":"2013","journal-title":"Proc. IEEE Int. Conf. Comput. Vis."},{"key":"10.1016\/j.compmedimag.2019.101688_bib0180","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1016\/j.compmedimag.2016.11.003","article-title":"An artificial neural network method for lumen and media-adventitia border detection in IVUS","volume":"57","author":"Su","year":"2017","journal-title":"Comput. Med. Imaging Graph."},{"key":"10.1016\/j.compmedimag.2019.101688_bib0185","first-page":"1556","article-title":"Improved semantic representations from tree-structured long short-term memory networks","author":"Tai","year":"2015","journal-title":"Proc. Annu. Meeting Assoc. Comput. Linguistics and Int. Joint Conf. Natural Lang. Proc., Vol. 1"},{"key":"10.1016\/j.compmedimag.2019.101688_bib0190","series-title":"Deepvesselnet: Vessel Segmentation, Centerline Prediction, and Bifurcation Detection in 3-d Angiographic Volumes","author":"Tetteh","year":"2019"},{"issue":"6","key":"10.1016\/j.compmedimag.2019.101688_bib0195","doi-asserted-by":"crossref","first-page":"1169","DOI":"10.1002\/mrm.10164","article-title":"3d MRA coronary axis determination using a minimum cost path approach","volume":"47","author":"Wink","year":"2002","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.compmedimag.2019.101688_bib0200","first-page":"1158","article-title":"Residual attention based network for hand bone age assessment","author":"Wu","year":"2019","journal-title":"Proc. IEEE Int. Symp. Biomed. Imaging"},{"key":"10.1016\/j.compmedimag.2019.101688_bib0205","article-title":"A multi-modal network for cardiomyopathy death risk prediction with CMR images and clinical information","author":"Xia","year":"2019","journal-title":"Proc. Int. Conf. Med. Image Comput. Comput. Assist. Intervent."},{"key":"10.1016\/j.compmedimag.2019.101688_bib0210","first-page":"802","article-title":"Convolutional LSTM network: a machine learning approach for precipitation nowcasting","author":"Xingjian","year":"2015","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.compmedimag.2019.101688_bib0215","first-page":"2048","article-title":"Show, attend and tell: neural image caption generation with visual attention","author":"Xu","year":"2015","journal-title":"International Conference on Machine Learning"},{"issue":"5","key":"10.1016\/j.compmedimag.2019.101688_bib0220","doi-asserted-by":"crossref","first-page":"663","DOI":"10.1007\/s10554-016-1053-3","article-title":"Value of three-dimensional strain parameters for predicting left ventricular remodeling after ST-elevation myocardial infarction","volume":"33","author":"Xu","year":"2017","journal-title":"Int. J. Cardiovasc. Imaging"},{"key":"10.1016\/j.compmedimag.2019.101688_bib0225","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.compmedimag.2014.05.012","article-title":"Atlas-based liver segmentation and hepatic fat-fraction assessment for clinical trials","volume":"41","author":"Yan","year":"2015","journal-title":"Comput. Med. Imaging Graph."},{"issue":"4","key":"10.1016\/j.compmedimag.2019.101688_bib0230","doi-asserted-by":"crossref","first-page":"921","DOI":"10.1007\/s10554-011-9894-2","article-title":"Automatic centerline extraction of coronary arteries in coronary computed tomographic angiography","volume":"28","author":"Yang","year":"2012","journal-title":"Int. J. Cardiovasc. Imaging"},{"key":"10.1016\/j.compmedimag.2019.101688_bib0235","first-page":"287","article-title":"Automatic 3d cardiovascular MR segmentation with densely-connected volumetric convnets","author":"Yu","year":"2017","journal-title":"Proc. Int. Conf. Med. Image Comput. Comput. Assist. Intervent."},{"key":"10.1016\/j.compmedimag.2019.101688_bib0240","first-page":"73","article-title":"Bidirectional long short-term memory networks for relation classification","author":"Zhang","year":"2015","journal-title":"Proc. Pacific Asia Conf. Lang. Inf. Comput."},{"key":"10.1016\/j.compmedimag.2019.101688_bib0245","first-page":"755","article-title":"Deep reinforcement learning for vessel centerline tracing in multi-modality 3d volumes","author":"Zhang","year":"2018","journal-title":"Proc. Int. Conf. Med. Image Comput. Comput. Assist. Intervent."},{"key":"10.1016\/j.compmedimag.2019.101688_bib0250","series-title":"Self-Attention Generative Adversarial Networks","author":"Zhang","year":"2019"},{"key":"10.1016\/j.compmedimag.2019.101688_bib0255","series-title":"Coronary Artery Segmentation and Motion Modelling","author":"Zhang","year":"2010"},{"issue":"5","key":"10.1016\/j.compmedimag.2019.101688_bib0260","doi-asserted-by":"crossref","first-page":"1571","DOI":"10.1109\/JBHI.2017.2776246","article-title":"Robust segmentation of intima-media borders with different morphologies and dynamics during the cardiac cycle","volume":"22","author":"Zhao","year":"2017","journal-title":"IEEE J. Biomed. Health Inform."}],"container-title":["Computerized Medical Imaging and Graphics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S089561111930103X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S089561111930103X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2020,2,17]],"date-time":"2020-02-17T11:26:48Z","timestamp":1581938808000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S089561111930103X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,3]]},"references-count":52,"alternative-id":["S089561111930103X"],"URL":"https:\/\/doi.org\/10.1016\/j.compmedimag.2019.101688","relation":{},"ISSN":["0895-6111"],"issn-type":[{"value":"0895-6111","type":"print"}],"subject":[],"published":{"date-parts":[[2020,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Learning tree-structured representation for 3D coronary artery segmentation","name":"articletitle","label":"Article Title"},{"value":"Computerized Medical Imaging and Graphics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compmedimag.2019.101688","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"101688"}}