{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:42:08Z","timestamp":1732038128787},"reference-count":38,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2019,4,1]],"date-time":"2019-04-01T00:00:00Z","timestamp":1554076800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2020,2,20]],"date-time":"2020-02-20T00:00:00Z","timestamp":1582156800000},"content-version":"am","delay-in-days":325,"URL":"http:\/\/www.elsevier.com\/open-access\/userlicense\/1.0\/"}],"content-domain":{"domain":["clinicalkey.jp","clinicalkey.com","clinicalkey.es","clinicalkey.com.au","clinicalkey.fr","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computerized Medical Imaging and Graphics"],"published-print":{"date-parts":[[2019,4]]},"DOI":"10.1016\/j.compmedimag.2019.01.007","type":"journal-article","created":{"date-parts":[[2019,1,29]],"date-time":"2019-01-29T22:35:16Z","timestamp":1548801316000},"page":"11-18","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":121,"special_numbering":"C","title":["A decision support tool for early detection of knee OsteoArthritis using X-ray imaging and machine learning: Data from the OsteoArthritis Initiative"],"prefix":"10.1016","volume":"73","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3569-0764","authenticated-orcid":false,"given":"Abdelbasset","family":"Brahim","sequence":"first","affiliation":[]},{"given":"Rachid","family":"Jennane","sequence":"additional","affiliation":[]},{"given":"Rabia","family":"Riad","sequence":"additional","affiliation":[]},{"given":"Thomas","family":"Janvier","sequence":"additional","affiliation":[]},{"given":"Laila","family":"Khedher","sequence":"additional","affiliation":[]},{"given":"Hechmi","family":"Toumi","sequence":"additional","affiliation":[]},{"given":"Eric","family":"Lespessailles","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compmedimag.2019.01.007_bib0005","doi-asserted-by":"crossref","first-page":"1195","DOI":"10.1109\/ICPR.2016.7899799","article-title":"Quantifying radiographic knee osteoarthritis severity using deep convolutional neural networks","author":"Antony","year":"2016","journal-title":"2016 23rd International Conference on Pattern Recognition (ICPR)"},{"issue":"7","key":"10.1016\/j.compmedimag.2019.01.007_bib0010","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1371\/journal.pone.0135107","article-title":"Comparison between different intensity normalization methods in 123 I-ioflupane imaging for the Automatic Detection of Parkinsonism","volume":"10","author":"Brahim","year":"2015","journal-title":"PLOS ONE"},{"key":"10.1016\/j.compmedimag.2019.01.007_bib0015","doi-asserted-by":"crossref","first-page":"234","DOI":"10.1016\/j.asoc.2015.08.030","article-title":"Intensity normalization of DaTSCAN SPECT imaging using a model-based clustering approach","volume":"37","author":"Brahim","year":"2015","journal-title":"Appl. Soft Comput."},{"issue":"1","key":"10.1016\/j.compmedimag.2019.01.007_bib0020","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1016\/j.berh.2005.08.002","article-title":"Which radiographic techniques should we use for research and clinical practice?","volume":"20","author":"Buckland-Wright","year":"2006","journal-title":"Best Pract. Res. Clin. Rheumatol."},{"issue":"2","key":"10.1016\/j.compmedimag.2019.01.007_bib0025","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1053\/joca.2002.0866","article-title":"New radiographic-based surrogate outcome measures for osteoarthritis of the knee","volume":"11","author":"Duryea","year":"2003","journal-title":"Osteoarthr. Cartil."},{"key":"10.1016\/j.compmedimag.2019.01.007_bib0030","doi-asserted-by":"crossref","first-page":"622","DOI":"10.1038\/nrrheum.2012.113","article-title":"Recent advances in osteoarthritis imaging \u2013 the Osteoarthritis Initiative","volume":"8","author":"Eckstein","year":"2012","journal-title":"Nat. Rev. Rheumatol."},{"key":"10.1016\/j.compmedimag.2019.01.007_bib0035","doi-asserted-by":"crossref","first-page":"194","DOI":"10.1109\/CONIELECOMP.2014.6808590","article-title":"Knee osteoarthritis pain prediction from X-ray imaging: Data from osteoarthritis initiative","author":"Galv\u00e1n-Tejada","year":"2014","journal-title":"2014 International Conference on Electronics, Communications and Computers (CONIELECOMP)"},{"issue":"4","key":"10.1016\/j.compmedimag.2019.01.007_bib0040","first-page":"376","article-title":"Clinical aspects, pathology and pathophysiology of osteoarthritis","volume":"6","author":"Goldring","year":"2006","journal-title":"J. Musculoskelet. Neuronal Interact."},{"key":"10.1016\/j.compmedimag.2019.01.007_bib0045","doi-asserted-by":"crossref","first-page":"230","DOI":"10.1111\/j.1749-6632.2009.05240.x","article-title":"Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis","volume":"1192","author":"Goldring","year":"2010","journal-title":"Ann. N. Y. Acad. Sci."},{"key":"10.1016\/j.compmedimag.2019.01.007_bib0050","series-title":"Digital Image Processing","author":"Gonzalez","year":"2002"},{"issue":"3","key":"10.1016\/j.compmedimag.2019.01.007_bib0055","doi-asserted-by":"crossref","first-page":"567","DOI":"10.1016\/j.rdc.2013.02.001","article-title":"Osteoarthritis: a review of strengths and weaknesses of different imaging options","volume":"39","author":"Guermazi","year":"2013","journal-title":"Rheum. Dis. Clin. N. Am."},{"issue":"5","key":"10.1016\/j.compmedimag.2019.01.007_bib0060","doi-asserted-by":"crossref","first-page":"1085","DOI":"10.1016\/j.rcl.2017.04.012","article-title":"Imaging in osteoarthritis","volume":"55","author":"Hayashi","year":"2017","journal-title":"Radiol. Clin. N. Am."},{"key":"10.1016\/j.compmedimag.2019.01.007_bib0065","series-title":"Econometric Methods with Applications in Business and Economics","author":"Heij","year":"2004"},{"key":"10.1016\/j.compmedimag.2019.01.007_bib0070","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1007\/s10044-012-0288-4","article-title":"One dimensional local binary pattern for bone texture characterization","volume":"17","author":"Houam","year":"2014","journal-title":"Pattern Anal. Appl."},{"issue":"4\u20135","key":"10.1016\/j.compmedimag.2019.01.007_bib0075","doi-asserted-by":"crossref","first-page":"411","DOI":"10.1016\/S0893-6080(00)00026-5","article-title":"Independent component analysis: algorithms and applications","volume":"13","author":"Hyv\u00e4rinen","year":"2000","journal-title":"Neural Netw."},{"issue":"Supplement C","key":"10.1016\/j.compmedimag.2019.01.007_bib0080","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1016\/j.compmedimag.2015.03.004","article-title":"Fully automated diabetic retinopathy screening using morphological component analysis","volume":"43","author":"Imani","year":"2015","journal-title":"Comput. Med. Imaging Graphics"},{"key":"10.1016\/j.compmedimag.2019.01.007_bib0085","series-title":"Procedure Manual for Radiographic Examinations of the Knee, Hand, Pelvis and Lower Limbs","author":"Initiative","year":"2013"},{"issue":"2","key":"10.1016\/j.compmedimag.2019.01.007_bib0090","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1016\/j.joca.2016.10.005","article-title":"Subchondral tibial bone texture analysis predicts knee osteoarthritis progression: data from the Osteoarthritis Initiative Tibial bone texture & knee OA progression","volume":"25","author":"Janvier","year":"2017","journal-title":"Osteoarthr. Cartil."},{"key":"10.1016\/j.compmedimag.2019.01.007_bib0095","first-page":"1","article-title":"Subchondral tibial bone texture predicts the incidence of radiographic knee osteoarthritis: data from the osteoarthritis initiative","author":"Janvier","year":"2017","journal-title":"Osteoarthr. Cartil."},{"key":"10.1016\/j.compmedimag.2019.01.007_bib0100","doi-asserted-by":"crossref","first-page":"453","DOI":"10.1098\/rspa.1946.0056","article-title":"An invariant form for the prior probability in estimation problems","volume":"186","author":"Jeffreys","year":"1946","journal-title":"Proc. R. Soc. Lond. Ser. A"},{"key":"10.1016\/j.compmedimag.2019.01.007_bib0105","doi-asserted-by":"crossref","first-page":"494","DOI":"10.1136\/ard.16.4.494","article-title":"Radiologic assessment of osteoarthritis","volume":"16","author":"Kellgren","year":"1957","journal-title":"Ann. Rheum. Dis."},{"issue":"3","key":"10.1016\/j.compmedimag.2019.01.007_bib0110","doi-asserted-by":"crossref","first-page":"1650050","DOI":"10.1142\/S0129065716500507","article-title":"Independent component analysis-support vector machine-based computer-aided diagnosis system for Alzheimer's with visual support","volume":"27","author":"Khedher","year":"2017","journal-title":"Int. J. Neural Syst."},{"key":"10.1016\/j.compmedimag.2019.01.007_bib0115","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.medengphy.2017.02.004","article-title":"Detecting knee osteoarthritis and its discriminating parameters using random forests","volume":"43","author":"Kotti","year":"2017","journal-title":"Med. Eng. Phys."},{"issue":"2","key":"10.1016\/j.compmedimag.2019.01.007_bib0120","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.compmedimag.2011.07.006","article-title":"A fully automated trabecular bone structural analysis tool based on T2*-weighted magnetic resonance imaging","volume":"36","author":"Kraiger","year":"2012","journal-title":"Comput. Med. Imaging Graphics"},{"key":"10.1016\/j.compmedimag.2019.01.007_bib0125","series-title":"Information Theory and Statistics, Dover Books on Mathematics","author":"Kullback","year":"1959"},{"issue":"7","key":"10.1016\/j.compmedimag.2019.01.007_bib0130","doi-asserted-by":"crossref","first-page":"535","DOI":"10.1016\/j.compmedimag.2010.03.006","article-title":"Random forest based lung nodule classification aided by clustering","volume":"34","author":"Lee","year":"2010","journal-title":"Comput. Med. Imaging Graphics"},{"issue":"4","key":"10.1016\/j.compmedimag.2019.01.007_bib0135","first-page":"313","article-title":"Clinical research in OA-the NIH Osteoarthritis Initiative","volume":"8","author":"Lester","year":"2008","journal-title":"Musculoskelet. Neuronal Interact."},{"issue":"3","key":"10.1016\/j.compmedimag.2019.01.007_bib0140","doi-asserted-by":"crossref","first-page":"717","DOI":"10.1016\/j.compeleceng.2012.10.004","article-title":"Variational Bayesian independent component analysis-support vector machine for remote sensing classification","volume":"39","author":"Li","year":"2013","journal-title":"Comput. Electr. Eng."},{"issue":"1","key":"10.1016\/j.compmedimag.2019.01.007_bib0145","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1016\/j.cmpb.2013.03.015","article-title":"Functional activity maps based on significance measures and independent component analysis","volume":"111","author":"Mart\u00ednez-Murcia","year":"2013","journal-title":"Comput. Methods Prog. Biomed."},{"issue":"8","key":"10.1016\/j.compmedimag.2019.01.007_bib0150","doi-asserted-by":"crossref","first-page":"646","DOI":"10.1046\/j.1525-1497.2002.10750.x","article-title":"Simplifying likelihood ratios","volume":"17","author":"McGee","year":"2002","journal-title":"J. Gen. Intern. Med."},{"issue":"4","key":"10.1016\/j.compmedimag.2019.01.007_bib0155","doi-asserted-by":"crossref","first-page":"400","DOI":"10.1002\/art.1780130406","article-title":"Subchondral bone changes in patients with early degenerative joint disease","volume":"13","author":"Radin","year":"1970","journal-title":"Arthritis Rheum."},{"key":"10.1016\/j.compmedimag.2019.01.007_bib0160","series-title":"Osteoarthritis: Pathogenesis, Clinical Aspects and Diagnosis, EULAR Compendium on Rheumatic Diseases","first-page":"444","author":"Sellam","year":"2009"},{"issue":"2","key":"10.1016\/j.compmedimag.2019.01.007_bib0165","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1109\/TBME.2008.2006025","article-title":"Knee X-ray image analysis method for automated detection of osteoarthritis","volume":"56","author":"Shamir","year":"2009","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.compmedimag.2019.01.007_bib0170","doi-asserted-by":"crossref","first-page":"1307","DOI":"10.1016\/j.joca.2009.04.010","article-title":"Early detection of radiographic knee osteoarthritis using computer-aided analysis","volume":"17","author":"Shamir","year":"2009","journal-title":"Osteoarthr. Cartil."},{"key":"10.1016\/j.compmedimag.2019.01.007_bib0175","doi-asserted-by":"crossref","first-page":"162","DOI":"10.1016\/j.bsbt.2016.11.004","article-title":"Detection and prediction of osteoarthritis in knee and hand joints based on the X-ray image analysis","author":"Stachowiak","year":"2016","journal-title":"Biosurf. Biotribol."},{"issue":"4","key":"10.1016\/j.compmedimag.2019.01.007_bib0180","doi-asserted-by":"crossref","first-page":"574","DOI":"10.1016\/j.joca.2013.01.002","article-title":"Spatial and temporal changes of subchondral bone proceed to microscopic articular cartilage degeneration in guinea pigs with spontaneous osteoarthritis","volume":"21","author":"Wang","year":"2013","journal-title":"Osteoarthr. Cartil."},{"issue":"5","key":"10.1016\/j.compmedimag.2019.01.007_bib0185","doi-asserted-by":"crossref","first-page":"2030","DOI":"10.1118\/1.3373522","article-title":"A signature dissimilarity measure for trabecular bone texture in knee radiographs","volume":"37","author":"Woloszynski","year":"2010","journal-title":"Med. Phys."},{"issue":"6","key":"10.1016\/j.compmedimag.2019.01.007_bib0190","first-page":"3379","article-title":"Computer-aided diagnosis of early knee osteoarthritis based on MRI T2 mapping","volume":"24","author":"Wu","year":"2014","journal-title":"Biomed. Mater. Eng."}],"container-title":["Computerized Medical Imaging and Graphics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0895611119300035?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0895611119300035?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,4,18]],"date-time":"2021-04-18T15:39:07Z","timestamp":1618760347000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0895611119300035"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,4]]},"references-count":38,"alternative-id":["S0895611119300035"],"URL":"https:\/\/doi.org\/10.1016\/j.compmedimag.2019.01.007","relation":{},"ISSN":["0895-6111"],"issn-type":[{"value":"0895-6111","type":"print"}],"subject":[],"published":{"date-parts":[[2019,4]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A decision support tool for early detection of knee OsteoArthritis using X-ray imaging and machine learning: Data from the OsteoArthritis Initiative","name":"articletitle","label":"Article Title"},{"value":"Computerized Medical Imaging and Graphics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compmedimag.2019.01.007","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2019 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}