{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,16]],"date-time":"2025-04-16T16:29:54Z","timestamp":1744820994882,"version":"3.37.3"},"reference-count":36,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,9,1]],"date-time":"2017-09-01T00:00:00Z","timestamp":1504224000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100003032","name":"ANRT","doi-asserted-by":"crossref","id":[{"id":"10.13039\/501100003032","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":["clinicalkey.jp","clinicalkey.com","clinicalkey.es","clinicalkey.com.au","clinicalkey.fr","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computerized Medical Imaging and Graphics"],"published-print":{"date-parts":[[2017,9]]},"DOI":"10.1016\/j.compmedimag.2016.12.002","type":"journal-article","created":{"date-parts":[[2016,12,28]],"date-time":"2016-12-28T19:01:20Z","timestamp":1482951680000},"page":"42-49","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":100,"special_numbering":"C","title":["Feature selection for outcome prediction in oesophageal cancer using genetic algorithm and random forest classifier"],"prefix":"10.1016","volume":"60","author":[{"given":"Desbordes","family":"Paul","sequence":"first","affiliation":[]},{"given":"Ruan","family":"Su","sequence":"additional","affiliation":[]},{"given":"Modzelewski","family":"Romain","sequence":"additional","affiliation":[]},{"given":"Vauclin","family":"S\u00e9bastien","sequence":"additional","affiliation":[]},{"given":"Vera","family":"Pierre","sequence":"additional","affiliation":[]},{"given":"Gardin","family":"Isabelle","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"5","key":"10.1016\/j.compmedimag.2016.12.002_bib0005","doi-asserted-by":"crossref","first-page":"1264","DOI":"10.1109\/21.44046","article-title":"Textural features corresponding to textural properties","volume":"19","author":"Amadasun","year":"1989","journal-title":"IEEE Trans. Syst. Man Cybern."},{"issue":"7","key":"10.1016\/j.compmedimag.2016.12.002_bib0010","doi-asserted-by":"crossref","first-page":"591","DOI":"10.1016\/S0262-8856(03)00057-X","article-title":"Genetic algorithm based feature selection for target detection in SAR images","volume":"21","author":"Bhanu","year":"2003","journal-title":"Image Vis. Comput."},{"year":"1984","series-title":"Classification and Regression Trees","author":"Breiman","key":"10.1016\/j.compmedimag.2016.12.002_bib0015"},{"issue":"1","key":"10.1016\/j.compmedimag.2016.12.002_bib0020","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"issue":"6","key":"10.1016\/j.compmedimag.2016.12.002_bib0025","doi-asserted-by":"crossref","first-page":"891","DOI":"10.2967\/jnumed.113.127340","article-title":"Textural parameters of tumor heterogeneity in 18F-FDG PET\/CT for therapy response assessment and prognosis in patients with locally advanced rectal cancer","volume":"55","author":"Bundschuh","year":"2014","journal-title":"J. Nucl. Med."},{"issue":"1","key":"10.1016\/j.compmedimag.2016.12.002_bib0030","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.compeleceng.2013.11.024","article-title":"A survey on feature selection methods","volume":"40","author":"Chandrashekar","year":"2014","journal-title":"Comput. Electr. Eng."},{"key":"10.1016\/j.compmedimag.2016.12.002_bib0035","series-title":"Proceeding of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining \u2013 KDD 08","first-page":"124","article-title":"FAST: a ROC-based feature selection metric for small samples and imbalanced data classification problems","author":"Chen","year":"2008"},{"issue":"3","key":"10.1016\/j.compmedimag.2016.12.002_bib0040","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Mach. Learn."},{"issue":"6","key":"10.1016\/j.compmedimag.2016.12.002_bib0045","doi-asserted-by":"crossref","first-page":"1162","DOI":"10.1016\/j.patcog.2008.08.011","article-title":"Exploring feature-based approaches in PET images for predicting cancer treatment outcomes","volume":"42","author":"El Naqa","year":"2009","journal-title":"Pattern Recognit."},{"issue":"2","key":"10.1016\/j.compmedimag.2016.12.002_bib0050","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1016\/S0146-664X(75)80008-6","article-title":"Texture analysis using gray level run lengths","volume":"4","author":"Galloway","year":"1975","journal-title":"Comput. Graph. Image Process."},{"issue":"14","key":"10.1016\/j.compmedimag.2016.12.002_bib0055","doi-asserted-by":"crossref","first-page":"2225","DOI":"10.1016\/j.patrec.2010.03.014","article-title":"Variable selection using random forests","volume":"31","author":"Genuer","year":"2010","journal-title":"Pattern Recognit. Lett."},{"key":"10.1016\/j.compmedimag.2016.12.002_bib0060","series-title":"Proceedings of the 21st International Conference on Machine Learning","article-title":"Margin based feature selection \u2013 theory and algorithms","author":"Gilad-Bachrach","year":"2004"},{"issue":"121","key":"10.1016\/j.compmedimag.2016.12.002_bib0065","doi-asserted-by":"crossref","first-page":"124","DOI":"10.2307\/2223319","article-title":"Measurement of inequality of incomes","volume":"31","author":"Gini","year":"1921","journal-title":"Econ. J."},{"issue":"4","key":"10.1016\/j.compmedimag.2016.12.002_bib0070","doi-asserted-by":"crossref","first-page":"389","DOI":"10.1023\/A:1012487302797","article-title":"Gene selection for cancer classification using support vector machines","volume":"46","author":"Guyon","year":"2002","journal-title":"Mach. Learn."},{"year":"1973","series-title":"Textural Features for Image Classification","author":"Haralick","key":"10.1016\/j.compmedimag.2016.12.002_bib0075"},{"issue":"7","key":"10.1016\/j.compmedimag.2016.12.002_bib0080","doi-asserted-by":"crossref","first-page":"1191","DOI":"10.1007\/s00259-011-1755-7","article-title":"Prognostic value of 18F-FDG PET image-based parameters in oesophageal cancer and impact of tumour delineation methodology","volume":"38","author":"Hatt","year":"2011","journal-title":"Eur. J. Nucl. Med. Mol. Imaging"},{"issue":"1","key":"10.1016\/j.compmedimag.2016.12.002_bib0085","doi-asserted-by":"crossref","first-page":"38","DOI":"10.2967\/jnumed.114.144055","article-title":"18F-FDG PET uptake characterization through texture analysis: investigating the complementary nature of heterogeneity and functional tumor volume in a multi-cancer site patient cohort","volume":"56","author":"Hatt","year":"2015","journal-title":"J. Nucl. Med."},{"issue":"3","key":"10.1016\/j.compmedimag.2016.12.002_bib0090","doi-asserted-by":"crossref","first-page":"429","DOI":"10.1007\/s00259-014-2953-x","article-title":"Increased evidence for the prognostic value of primary tumor asphericity in pretherapeutic FDG PET for risk stratification in patients with head and neck cancer","volume":"42","author":"Hofheinz","year":"2014","journal-title":"Eur. J. Nucl. Med. Mol. Imaging"},{"year":"1992","series-title":"Adaptation in Natural and Artificial Systems","author":"Holland","key":"10.1016\/j.compmedimag.2016.12.002_bib0095"},{"issue":"1","key":"10.1016\/j.compmedimag.2016.12.002_bib0100","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1007\/s00259-014-2882-8","article-title":"Machine learning models for the differential diagnosis of vascular parkinsonism and Parkinson's disease using [123I]FP-CIT SPECT","volume":"42","author":"Huertas-Fernandez","year":"2014","journal-title":"Eur. J. Nucl. Med. Mol. Imaging"},{"key":"10.1016\/j.compmedimag.2016.12.002_bib0105","series-title":"AAAI-92 Proceedings","first-page":"129","article-title":"The feature selection problem: traditional methods and a new algorithm","author":"Kira","year":"1992"},{"issue":"4","key":"10.1016\/j.compmedimag.2016.12.002_bib0110","doi-asserted-by":"crossref","first-page":"441","DOI":"10.1016\/j.ejca.2011.11.036","article-title":"Radiomics: extracting more information from medical images using advanced feature analysis","volume":"48","author":"Lambin","year":"2012","journal-title":"Eur. J. Cancer"},{"issue":"3","key":"10.1016\/j.compmedimag.2016.12.002_bib0115","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1016\/j.artmed.2015.07.002","article-title":"Robust feature selection to predict tumor treatment outcome","volume":"64","author":"Mi","year":"2015","journal-title":"Artif. Intell. Med."},{"issue":"3","key":"10.1016\/j.compmedimag.2016.12.002_bib0120","doi-asserted-by":"crossref","first-page":"414","DOI":"10.2967\/jnumed.113.129858","article-title":"Tumor texture analysis in 18F-FDG PET: relationships between texture parameters, histogram indices, standardized uptake values, metabolic volumes, and total lesion glycolysis","volume":"55","author":"Orlhac","year":"2014","journal-title":"J. Nucl. Med."},{"issue":"12","key":"10.1016\/j.compmedimag.2016.12.002_bib0125","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1371\/journal.pone.0145063","article-title":"18F-FDG PET-derived textural indices reflect tissue-specific uptake pattern in non-small cell lung cancer","volume":"10","author":"Orlhac","year":"2015","journal-title":"PLOS ONE"},{"key":"10.1016\/j.compmedimag.2016.12.002_bib0130","doi-asserted-by":"crossref","first-page":"13087","DOI":"10.1038\/srep13087","article-title":"Machine learning methods for quantitative radiomic biomarkers (supplement)","volume":"5","author":"Parmar","year":"2015","journal-title":"Sci. Rep."},{"key":"10.1016\/j.compmedimag.2016.12.002_bib0135","doi-asserted-by":"crossref","first-page":"1119","DOI":"10.1016\/0167-8655(94)90127-9","volume":"15","author":"Pudil","year":"1994","journal-title":"Pattern Recognit. Lett."},{"issue":"1","key":"10.1016\/j.compmedimag.2016.12.002_bib0140","doi-asserted-by":"crossref","first-page":"72","DOI":"10.2307\/1412159","article-title":"The proof and measurement of association between two things","volume":"15","author":"Spearman","year":"1904","journal-title":"Am. J. Psychol."},{"issue":"10","key":"10.1016\/j.compmedimag.2016.12.002_bib0145","doi-asserted-by":"crossref","first-page":"101707","DOI":"10.1118\/1.4820445","article-title":"Predicting pathologic tumor response to chemoradiotherapy with histogram distances characterizing longitudinal changes in 18F-FDG uptake patterns","volume":"40","author":"Tan","year":"2013","journal-title":"Med. Phys."},{"year":"2010","series-title":"Introduction to Pattern Recognition: A Matlab Approach","author":"Theodoridis","key":"10.1016\/j.compmedimag.2016.12.002_bib0150"},{"key":"10.1016\/j.compmedimag.2016.12.002_bib0155","first-page":"140","article-title":"Texture indexes and gray level size zone matrix application to cell nuclei classification","author":"Thibault","year":"2009","journal-title":"Pattern Recognit. Inf. Process."},{"issue":"1","key":"10.1016\/j.compmedimag.2016.12.002_bib0160","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1111\/j.2517-6161.1996.tb02080.x","article-title":"Regression shrinkage and selection via the lasso","volume":"58","author":"Tibshirani","year":"1996","journal-title":"J. R. Stat. Soc. Ser. B (Methodol.)"},{"issue":"3","key":"10.1016\/j.compmedimag.2016.12.002_bib0165","doi-asserted-by":"crossref","first-page":"369","DOI":"10.2967\/jnumed.110.082404","article-title":"Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer","volume":"52","author":"Tixier","year":"2011","journal-title":"J. Nucl. Med."},{"issue":"2","key":"10.1016\/j.compmedimag.2016.12.002_bib0170","doi-asserted-by":"crossref","first-page":"290","DOI":"10.1007\/s00259-012-2280-z","article-title":"Predictive and prognostic value of metabolic tumour volume and total lesion glycolysis in solid tumours","volume":"40","author":"Van De Wiele","year":"2013","journal-title":"Eur. J. Nucl. Med. Mol. Imaging"},{"issue":"22","key":"10.1016\/j.compmedimag.2016.12.002_bib0175","doi-asserted-by":"crossref","first-page":"6901","DOI":"10.1088\/0031-9155\/54\/22\/010","article-title":"Development of a generic thresholding algorithm for the delineation of 18FDG-PET-positive tissue: application to the comparison of three thresholding models","volume":"54","author":"Vauclin","year":"2009","journal-title":"Phys. Med. Biol."},{"issue":"9","key":"10.1016\/j.compmedimag.2016.12.002_bib0180","doi-asserted-by":"crossref","first-page":"1100","DOI":"10.1109\/T-C.1971.223410","article-title":"A direct method of nonparametric measurement selection","volume":"C-20","author":"Whitney","year":"1971","journal-title":"IEEE Trans. Comput."}],"container-title":["Computerized Medical Imaging and Graphics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S089561111630132X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S089561111630132X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,6,21]],"date-time":"2024-06-21T13:29:46Z","timestamp":1718976586000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S089561111630132X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,9]]},"references-count":36,"alternative-id":["S089561111630132X"],"URL":"https:\/\/doi.org\/10.1016\/j.compmedimag.2016.12.002","relation":{},"ISSN":["0895-6111"],"issn-type":[{"type":"print","value":"0895-6111"}],"subject":[],"published":{"date-parts":[[2017,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Feature selection for outcome prediction in oesophageal cancer using genetic algorithm and random forest classifier","name":"articletitle","label":"Article Title"},{"value":"Computerized Medical Imaging and Graphics","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compmedimag.2016.12.002","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2016 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}