{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T19:06:16Z","timestamp":1732043176050},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/100022963","name":"Key Research and Development Program of Zhejiang Province","doi-asserted-by":"publisher","award":["2021C01151"],"id":[{"id":"10.13039\/100022963","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004731","name":"Natural Science Foundation of Zhejiang Province","doi-asserted-by":"publisher","award":["LZ23F030007"],"id":[{"id":"10.13039\/501100004731","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Industry"],"published-print":{"date-parts":[[2024,2]]},"DOI":"10.1016\/j.compind.2023.104062","type":"journal-article","created":{"date-parts":[[2023,12,12]],"date-time":"2023-12-12T13:49:47Z","timestamp":1702388987000},"page":"104062","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["Incipient fault detection enhancement based on spatial-temporal multi-mode siamese feature contrast learning for industrial dynamic process"],"prefix":"10.1016","volume":"155","author":[{"given":"Yan","family":"Liu","sequence":"first","affiliation":[]},{"given":"Zuhua","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Kai","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Jun","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Chunyue","family":"Song","sequence":"additional","affiliation":[]},{"given":"Zhijiang","family":"Shao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"12","key":"10.1016\/j.compind.2023.104062_bib1","doi-asserted-by":"crossref","DOI":"10.3390\/pr10122557","article-title":"Hierarchical deep LSTM for fault detection and diagnosis for a chemical process","volume":"10","author":"Agarwal","year":"2022","journal-title":"Processes"},{"key":"10.1016\/j.compind.2023.104062_bib2","doi-asserted-by":"crossref","DOI":"10.1016\/j.compind.2021.103401","article-title":"Coupling data-driven and model-based methods to improve fault diagnosis","volume":"128","author":"Atoui","year":"2021","journal-title":"Comput. Ind."},{"key":"10.1016\/j.compind.2023.104062_bib3","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.psep.2023.07.094","article-title":"Robust fault detection for chemical processes based on dynamic low-rank matrix and optimized LSTM","volume":"178","author":"Cen","year":"2023","journal-title":"Process Saf. Environ. Prot."},{"issue":"11","key":"10.1016\/j.compind.2023.104062_bib4","doi-asserted-by":"crossref","first-page":"1744","DOI":"10.1109\/TNN.2011.2167240","article-title":"Learning speaker-specific characteristics with a deep neural architecture","volume":"22","author":"Chen","year":"2011","journal-title":"IEEE Trans. Neural Netw."},{"key":"10.1016\/j.compind.2023.104062_bib5","doi-asserted-by":"crossref","DOI":"10.1016\/j.oceaneng.2020.107570","article-title":"Observer-based fault detection for magnetic coupling underwater thrusters with applications in jiaolong HOV","volume":"210","author":"Chu","year":"2020","journal-title":"Ocean. Eng."},{"issue":"3","key":"10.1016\/j.compind.2023.104062_bib6","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Mach. Learn."},{"key":"10.1016\/j.compind.2023.104062_bib7","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.114094","article-title":"A hybrid fine-tuned VMD and CNN scheme for untrained compound fault diagnosis of rotating machinery with unequal-severity faults","volume":"167","author":"Dibaj","year":"2021","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.compind.2023.104062_bib8","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jprocont.2017.05.002","article-title":"A novel dynamic PCA algorithm for dynamic data modeling and process monitoring","volume":"67","author":"Dong","year":"2018","journal-title":"J. Process Control."},{"issue":"3","key":"10.1016\/j.compind.2023.104062_bib9","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1016\/0098-1354(93)80018-I","article-title":"A plant-wide industrial process control problem","volume":"17","author":"Downs","year":"1993","journal-title":"Comput. Chem. Eng."},{"issue":"8","key":"10.1016\/j.compind.2023.104062_bib10","doi-asserted-by":"crossref","first-page":"4539","DOI":"10.1002\/cjce.24779","article-title":"Improved dynamic kernel PCA based on local preserving projections and its application for electric submersible pump fault diagnosis","volume":"101","author":"Gao","year":"2023","journal-title":"Can. J. Chem. Eng."},{"issue":"16","key":"10.1016\/j.compind.2023.104062_bib11","doi-asserted-by":"crossref","first-page":"3999","DOI":"10.1109\/TSP.2013.2265222","article-title":"Empirical wavelet transform","volume":"61","author":"Gilles","year":"2013","journal-title":"IEEE Trans. Signal Process."},{"key":"10.1016\/j.compind.2023.104062_bib12","doi-asserted-by":"crossref","DOI":"10.1109\/TIM.2022.3225040","article-title":"Uncertainty-aware LSTM based dynamic flight fault detection for UAV actuator","volume":"72","author":"Guo","year":"2023","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"4","key":"10.1016\/j.compind.2023.104062_bib13","doi-asserted-by":"crossref","first-page":"1113","DOI":"10.1109\/TFUZZ.2022.3195290","article-title":"Fault detection for uncertain polynomial fuzzy systems using H-\/L-8 observer and ellipsoidal analysis","volume":"31","author":"Han","year":"2023","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"10.1016\/j.compind.2023.104062_bib14","doi-asserted-by":"crossref","unstructured":"He, K.M., Fan, H.Q., Wu, Y.X., Xie, S.N., Girshick, R., 2020. Momentum Contrast for Unsupervised Visual Representation Learning. IEEE Conference on Computer Vision and Pattern Recognition (CVPR'2020).","DOI":"10.1109\/CVPR42600.2020.00975"},{"key":"10.1016\/j.compind.2023.104062_bib15","article-title":"Orthogonal multi-block dynamic PLS for quality-related process monitoring","author":"Hu","year":"2023","journal-title":"IEEE Trans. Autom. Sci. Eng."},{"issue":"3","key":"10.1016\/j.compind.2023.104062_bib16","doi-asserted-by":"crossref","DOI":"10.1016\/j.ipm.2023.103284","article-title":"Joint contrastive triple-learning for deep multi-view clustering","volume":"60","author":"Hu","year":"2023","journal-title":"Inf. Process. Manag."},{"key":"10.1016\/j.compind.2023.104062_bib17","unstructured":"Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y.L., Isola, P., Maschinot, A., Liu, C., Krishnan, D., 2021. Supervised Contrastive Learning. Conference and Workshop on Neural Information Processing Systems (NeurIPS'2020)."},{"issue":"14","key":"10.1016\/j.compind.2023.104062_bib18","doi-asserted-by":"crossref","first-page":"2995","DOI":"10.1016\/j.ces.2004.04.031","article-title":"Statistical monitoring of dynamic processes based on dynamic independent component analysis","volume":"59","author":"Lee","year":"2004","journal-title":"Chem. Eng. Sci."},{"issue":"5","key":"10.1016\/j.compind.2023.104062_bib19","doi-asserted-by":"crossref","first-page":"3464","DOI":"10.1109\/TDSC.2021.3100680","article-title":"Optimal online liveness fault detection for multilayer cloud computing systems","volume":"19","author":"Lee","year":"2022","journal-title":"IEEE Trans. Dependable Secur. Comput."},{"key":"10.1016\/j.compind.2023.104062_bib20","doi-asserted-by":"crossref","DOI":"10.1016\/j.imavis.2023.104689","article-title":"Cross-stream contrastive learning for self-supervised skeleton-based action recognition","volume":"135","author":"Li","year":"2023","journal-title":"Image Vis. Comput."},{"key":"10.1016\/j.compind.2023.104062_bib21","doi-asserted-by":"crossref","DOI":"10.1016\/j.energy.2022.125858","article-title":"Endowing data-driven models with rejection ability: Out-of-distribution detection and confidence estimation for black-box models of building energy systems","volume":"263","author":"Liang","year":"2023","journal-title":"Energy"},{"issue":"3","key":"10.1016\/j.compind.2023.104062_bib22","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6501\/aca496","article-title":"A deep generative model based on CNN-CVAE for wind turbine condition monitoring","volume":"34","author":"Liu","year":"2023","journal-title":"Meas. Sci. Technol."},{"key":"10.1016\/j.compind.2023.104062_bib23","doi-asserted-by":"crossref","first-page":"119767","DOI":"10.1109\/ACCESS.2022.3221809","article-title":"An Active Fault Detection for Unmanned Surface Vehicles With Minor Fault","volume":"10","author":"Liu","year":"2022","journal-title":"IEEE Access"},{"key":"10.1016\/j.compind.2023.104062_bib24","doi-asserted-by":"crossref","DOI":"10.1016\/j.automatica.2021.110148","article-title":"A novel multivariate statistical process monitoring algorithm: Orthonormal subspace analysis","volume":"138","author":"Lou","year":"2022","journal-title":"Automatica"},{"issue":"13","key":"10.1016\/j.compind.2023.104062_bib25","doi-asserted-by":"crossref","first-page":"13581","DOI":"10.1109\/JSEN.2022.3175866","article-title":"Interval-valued reduced RNN for fault detection and diagnosis for wind energy conversion systems","volume":"22","author":"Mansouri","year":"2022","journal-title":"IEEE Sens. J."},{"issue":"1","key":"10.1016\/j.compind.2023.104062_bib26","doi-asserted-by":"crossref","first-page":"283","DOI":"10.1021\/acs.iecr.7b03338","article-title":"Robust principal component pursuit for fault detection in a blast furnace process","volume":"57","author":"Pan","year":"2018","journal-title":"Ind. Eng. Chem. Res."},{"issue":"11","key":"10.1016\/j.compind.2023.104062_bib27","doi-asserted-by":"crossref","DOI":"10.3390\/pr10112408","article-title":"A joint stacked autoencoder approach with silhouette information for industrial fault detection","volume":"10","author":"Ruan","year":"2022","journal-title":"Processes"},{"key":"10.1016\/j.compind.2023.104062_bib28","first-page":"2579","article-title":"Visualizing data using t-SNE","volume":"9","author":"van der Maaten","year":"2008","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.compind.2023.104062_bib29","doi-asserted-by":"crossref","first-page":"85271","DOI":"10.1109\/ACCESS.2020.2992627","article-title":"SCCNN: A Diagnosis Method for Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma Based on siamese Cross Contrast Neural Network","volume":"8","author":"Wang","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.compind.2023.104062_bib30","doi-asserted-by":"crossref","first-page":"8589","DOI":"10.1007\/s00521-022-08132-1","article-title":"Pixel attention convolutional network for image super-resolution","volume":"35","author":"Wang","year":"2022","journal-title":"Neural Comput. Appl."},{"issue":"18","key":"10.1016\/j.compind.2023.104062_bib31","doi-asserted-by":"crossref","DOI":"10.3390\/s22186978","article-title":"Unsupervised person Re-identification with attention-guided fine-grained features and symmetric contrast learning","volume":"22","author":"Wu","year":"2022","journal-title":"Sensors"},{"key":"10.1016\/j.compind.2023.104062_bib32","doi-asserted-by":"crossref","DOI":"10.1109\/TNNLS.2023.3247103","article-title":"Spatiotemporal decouple-and-squeeze contrastive learning for semisupervised skeleton-based action recognition","author":"Xu","year":"2023","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"3","key":"10.1016\/j.compind.2023.104062_bib33","first-page":"1099","article-title":"LSTM-based intelligent fault detection for fuzzy markov jump systems and its application to tunnel diode circuits","volume":"69","author":"Xue","year":"2022","journal-title":"IEEE Trans. Circuits Syst. II Express Briefs."},{"key":"10.1016\/j.compind.2023.104062_bib34","article-title":"Novel double layer BiLSTM minor soft fault detection for sensors in air-conditioning system with KPCA reducing dimensions","volume":"44","author":"Yan","year":"2021","journal-title":"J. Build. Eng."},{"issue":"9","key":"10.1016\/j.compind.2023.104062_bib35","doi-asserted-by":"crossref","first-page":"1184","DOI":"10.1080\/23744731.2021.2018873","article-title":"AHU sensor incipient fault detection based on piecewise ensemble empirical mode decomposition and an improved combined neural network","volume":"28","author":"Yan","year":"2022","journal-title":"Sci. Technol. Built Environ."},{"issue":"9","key":"10.1016\/j.compind.2023.104062_bib36","doi-asserted-by":"crossref","first-page":"1567","DOI":"10.1016\/j.jprocont.2012.06.009","article-title":"A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process","volume":"22","author":"Yin","year":"2012","journal-title":"J. Process Control."},{"issue":"5","key":"10.1016\/j.compind.2023.104062_bib37","doi-asserted-by":"crossref","first-page":"1494","DOI":"10.1002\/aic.15136","article-title":"A sparse PCA for nonlinear fault diagnosis and robust feature discovery of industrial processes","volume":"62","author":"Yu","year":"2016","journal-title":"AIChE J."},{"key":"10.1016\/j.compind.2023.104062_bib38","article-title":"Convolutional long short-term memory autoencoder-based feature learning for fault detection in industrial processes","volume":"70","author":"Yu","year":"2021","journal-title":"IEEE Trans. Instrum. Meas."},{"issue":"1","key":"10.1016\/j.compind.2023.104062_bib39","first-page":"1700","article-title":"Sensor fault diagnosis for uncertain dissimilar redundant actuation system of more electric aircraft via bond graph and improved principal component analysis","volume":"34","author":"Yu","year":"2023","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"10.1016\/j.compind.2023.104062_bib40","doi-asserted-by":"crossref","DOI":"10.1016\/j.enbuild.2021.111467","article-title":"Fault detection and diagnosis of the air handling unit via an enhanced kernel slow feature analysis approach considering the time-wise and batch-wise dynamics","volume":"253","author":"Zhang","year":"2021","journal-title":"Energ. Build."},{"key":"10.1016\/j.compind.2023.104062_bib41","article-title":"Imbalanced data based fault diagnosis of the chiller via integrating a new resampling technique with an improved ensemble extreme learning machine","volume":"70","author":"Zhang","year":"2023","journal-title":"J. Build. Eng."},{"key":"10.1016\/j.compind.2023.104062_bib42","article-title":"Fault detection and diagnosis of the air handling unit via combining the feature sparse representation based dynamic SFA and the LSTM network","volume":"269","author":"Zhang","year":"2023","journal-title":"Energ. Build."},{"key":"10.1016\/j.compind.2023.104062_bib43","doi-asserted-by":"crossref","first-page":"40216","DOI":"10.1109\/ACCESS.2023.3269575","article-title":"Active Fault Detection Based on Auxiliary Input Signal Design","volume":"11","author":"Zhang","year":"2023","journal-title":"IEEE Access"},{"key":"10.1016\/j.compind.2023.104062_bib44","doi-asserted-by":"crossref","first-page":"369","DOI":"10.1016\/j.isatra.2022.06.035","article-title":"Selective kernel convolution deep residual network based on channel-spatial attention mechanism and feature fusion for mechanical fault diagnosis","volume":"133","author":"Zhang","year":"2023","journal-title":"ISA Trans."},{"issue":"10","key":"10.1016\/j.compind.2023.104062_bib45","doi-asserted-by":"crossref","first-page":"10056","DOI":"10.1109\/TII.2023.3233960","article-title":"Semi-supervised contrast learning based on multiscale attention and multitarget contrast learning for bearing fault diagnosis","volume":"19","author":"Zhang","year":"2023","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.compind.2023.104062_bib46","article-title":"Active fault diagnosis for linear systems: within a signal processing framework","volume":"71","author":"Zhang","year":"2022","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.compind.2023.104062_bib47","doi-asserted-by":"crossref","DOI":"10.1016\/j.compchemeng.2021.107442","article-title":"Long-term hybrid prediction method based on multiscale decomposition and granular computing for oxygen supply network","volume":"153","author":"Zhou","year":"2021","journal-title":"Comput. Chem. Eng."},{"issue":"1","key":"10.1016\/j.compind.2023.104062_bib48","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1109\/TII.2022.3197190","article-title":"Attack and defense: adversarial security of data-driven FDC systems","volume":"19","author":"Zhuo","year":"2023","journal-title":"IEEE Trans. Ind. Inf."}],"container-title":["Computers in Industry"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0166361523002129?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0166361523002129?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,12,30]],"date-time":"2023-12-30T13:09:24Z","timestamp":1703941764000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0166361523002129"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,2]]},"references-count":48,"alternative-id":["S0166361523002129"],"URL":"https:\/\/doi.org\/10.1016\/j.compind.2023.104062","relation":{},"ISSN":["0166-3615"],"issn-type":[{"value":"0166-3615","type":"print"}],"subject":[],"published":{"date-parts":[[2024,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Incipient fault detection enhancement based on spatial-temporal multi-mode siamese feature contrast learning for industrial dynamic process","name":"articletitle","label":"Article Title"},{"value":"Computers in Industry","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compind.2023.104062","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104062"}}