{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T06:57:43Z","timestamp":1726469863157},"reference-count":41,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,2,1]],"date-time":"2024-02-01T00:00:00Z","timestamp":1706745600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100002855","name":"Ministry of Science and Technology of the People's Republic of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002855","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2020YFB1710002"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100016074","name":"Foundation of Equipment Pre-research Area","doi-asserted-by":"publisher","award":["61420030301"],"id":[{"id":"10.13039\/100016074","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100016095","name":"Equipment Development Department of the Central Military Commission","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100016095","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["52175433"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Industry"],"published-print":{"date-parts":[[2024,2]]},"DOI":"10.1016\/j.compind.2023.104060","type":"journal-article","created":{"date-parts":[[2023,12,15]],"date-time":"2023-12-15T16:32:33Z","timestamp":1702657953000},"page":"104060","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["A novel physically interpretable end-to-end network for stress monitoring in laser shock peening"],"prefix":"10.1016","volume":"155","author":[{"given":"Rui","family":"Qin","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2086-6808","authenticated-orcid":false,"given":"Zhifen","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Jing","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Zhengyao","family":"Du","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9063-926X","authenticated-orcid":false,"given":"Xianwen","family":"Xiang","sequence":"additional","affiliation":[]},{"given":"Jie","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Guangrui","family":"Wen","sequence":"additional","affiliation":[]},{"given":"Weifeng","family":"He","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compind.2023.104060_bib1","doi-asserted-by":"crossref","first-page":"2455","DOI":"10.1007\/s00170-018-2883-z","article-title":"Prediction of residual stress profile and optimization of surface conditions induced by laser shock peening process using artificial neural networks","volume":"100","author":"Ayeb","year":"2019","journal-title":"Int. J. Adv. Manuf. Technol."},{"key":"10.1016\/j.compind.2023.104060_bib2","first-page":"11","article-title":"Acoustic scene classification using parallel combination of LSTM and CNN","author":"Bae","year":"2016","journal-title":"DCASE"},{"key":"10.1016\/j.compind.2023.104060_bib3","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1016\/j.ijfatigue.2011.08.011","article-title":"Prediction and characterization of residual stresses from laser shock peening","volume":"36","author":"Brockman","year":"2012","journal-title":"Int. J. Fatigue"},{"key":"10.1016\/j.compind.2023.104060_bib4","unstructured":"Chupakhin, S., 2018. On the optimization of laser shock peening induced residual stresses. Technische Universit\u00e4t Hamburg-Harburg."},{"key":"10.1016\/j.compind.2023.104060_bib5","doi-asserted-by":"crossref","first-page":"10476","DOI":"10.3390\/app122010476","article-title":"Machine-learning-based methods for acoustic emission testing: a review","volume":"12","author":"Ciaburro","year":"2022","journal-title":"Appl. Sci."},{"key":"10.1016\/j.compind.2023.104060_bib6","doi-asserted-by":"crossref","DOI":"10.1016\/j.jmatprotec.2023.117908","article-title":"Tensile strength prediction in directed energy deposition through physics-informed machine learning and Shapley additive explanations","volume":"315","author":"Cooper","year":"2023","journal-title":"J. Mater. Process. Technol."},{"key":"10.1016\/j.compind.2023.104060_bib7","doi-asserted-by":"crossref","first-page":"348","DOI":"10.1016\/j.neucom.2020.04.110","article-title":"Interpretable spatio-temporal attention LSTM model for flood forecasting","volume":"403","author":"Ding","year":"2020","journal-title":"Neurocomputing"},{"key":"10.1016\/j.compind.2023.104060_bib8","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2022.108927","article-title":"BR-NPA: a non-parametric high-resolution attention model to improve the interpretability of attention","volume":"132","author":"Gomez","year":"2022","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.compind.2023.104060_bib9","doi-asserted-by":"crossref","first-page":"789","DOI":"10.1007\/s10845-019-01495-8","article-title":"A convolutional approach to quality monitoring for laser manufacturing","volume":"31","author":"Gonzalez-Val","year":"2020","journal-title":"J. Intell. Manuf."},{"key":"10.1016\/j.compind.2023.104060_bib10","first-page":"50","article-title":"European Union regulations on algorithmic decision-making and a \u201cright to explanation\u201d","volume":"38","author":"Goodman","year":"2017","journal-title":"AI Mag."},{"key":"10.1016\/j.compind.2023.104060_bib11","doi-asserted-by":"crossref","DOI":"10.1016\/j.compind.2022.103638","article-title":"Interpretable deep learning approach for tool wear monitoring in high-speed milling","volume":"138","author":"Guo","year":"2022","journal-title":"Comput. Ind."},{"key":"10.1016\/j.compind.2023.104060_bib12","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2023.113042","article-title":"Acoustic emission technology-based multifractal and unsupervised clustering on crack damage monitoring for low-carbon steel","author":"Huang","year":"2023","journal-title":"Measurement"},{"key":"10.1016\/j.compind.2023.104060_bib13","doi-asserted-by":"crossref","DOI":"10.1016\/j.aei.2022.101781","article-title":"Transformer-based hierarchical latent space VAE for interpretable remaining useful life prediction","volume":"54","author":"Jing","year":"2022","journal-title":"Adv. Eng. Inform."},{"key":"10.1016\/j.compind.2023.104060_bib14","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1016\/j.ijfatigue.2017.04.016","article-title":"Effect of laser shock peening on residual stress, microstructure and fatigue behavior of ATI 718Plus alloy","volume":"102","author":"Kattoura","year":"2017","journal-title":"Int. J. Fatigue"},{"key":"10.1016\/j.compind.2023.104060_bib15","doi-asserted-by":"crossref","unstructured":"Kirchschl\u00e4ger, P.G., 2021. Digital transformation and ethics: ethical considerations on the robotization and automation of society and the economy and the use of artificial intelligence. Nomos Verlag.","DOI":"10.5771\/9783845285504"},{"key":"10.1016\/j.compind.2023.104060_bib16","first-page":"719","article-title":"Non-contact acoustic emission monitoring during laser processing, International Congress on Applications of Lasers & Electro-Optics","author":"Li","year":"1992","journal-title":"Laser Inst. Am."},{"key":"10.1016\/j.compind.2023.104060_bib17","doi-asserted-by":"crossref","first-page":"2302","DOI":"10.1109\/TSMC.2020.3048950","article-title":"WaveletKernelNet: an interpretable deep neural network for industrial intelligent diagnosis","volume":"52","author":"Li","year":"2021","journal-title":"IEEE Trans. Syst. Man Cybern.: Syst."},{"key":"10.1016\/j.compind.2023.104060_bib18","doi-asserted-by":"crossref","first-page":"715","DOI":"10.1016\/j.ymssp.2019.01.045","article-title":"Study on the acoustic emission effect of plasma plume in pulsed laser welding","volume":"124","author":"Luo","year":"2019","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.compind.2023.104060_bib19","doi-asserted-by":"crossref","first-page":"2888","DOI":"10.3390\/app11072888","article-title":"Machine learning-based prediction and optimisation system for laser shock peening","volume":"11","author":"Mathew","year":"2021","journal-title":"Appl. Sci."},{"key":"10.1016\/j.compind.2023.104060_bib20","doi-asserted-by":"crossref","DOI":"10.1016\/j.compind.2019.07.005","article-title":"Online defect recognition of narrow overlap weld based on two-stage recognition model combining continuous wavelet transform and convolutional neural network","volume":"112","author":"Miao","year":"2019","journal-title":"Comput. Ind."},{"key":"10.1016\/j.compind.2023.104060_bib21","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1016\/j.neucom.2021.03.091","article-title":"A review on the attention mechanism of deep learning","volume":"452","author":"Niu","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.compind.2023.104060_bib22","article-title":"On-line evaluation and monitoring technology for material surface integrity in laser shock peening-a review","author":"Qin","year":"2022","journal-title":"J. Mater. Process. Technol."},{"key":"10.1016\/j.compind.2023.104060_bib23","doi-asserted-by":"crossref","DOI":"10.1016\/j.optlastec.2023.109505","article-title":"Acoustic emission for surface quality monitoring in laser shock peening via dual-feature fusion convolution neural network","volume":"164","author":"Qin","year":"2023","journal-title":"Opt. Laser Technol."},{"key":"10.1016\/j.compind.2023.104060_bib24","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2023.120018","article-title":"Surface stress monitoring of laser shock peening using AE time-scale texture image and multi-scale blueprint separable convolutional networks with attention mechanism","volume":"224","author":"Qin","year":"2023","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.compind.2023.104060_bib25","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1016\/j.apacoust.2016.03.010","article-title":"A novel acoustic monitoring method of laser peening","volume":"110","author":"Qiu","year":"2016","journal-title":"Appl. Acoust."},{"key":"10.1016\/j.compind.2023.104060_bib26","doi-asserted-by":"crossref","DOI":"10.1016\/j.aei.2021.101407","article-title":"A novel deep learning prediction model for concrete dam displacements using interpretable mixed attention mechanism","volume":"50","author":"Ren","year":"2021","journal-title":"Adv. Eng. Inform."},{"key":"10.1016\/j.compind.2023.104060_bib27","doi-asserted-by":"crossref","first-page":"291","DOI":"10.1016\/j.msea.2004.07.025","article-title":"Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy","volume":"386","author":"Rubio-Gonz\u00e1lez","year":"2004","journal-title":"Mater. Sci. Eng.: A"},{"key":"10.1016\/j.compind.2023.104060_bib28","doi-asserted-by":"crossref","first-page":"206","DOI":"10.1038\/s42256-019-0048-x","article-title":"Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead","volume":"1","author":"Rudin","year":"2019","journal-title":"Nat. Mach. Intell."},{"key":"10.1016\/j.compind.2023.104060_bib29","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1016\/j.optlaseng.2015.08.001","article-title":"Effect of laser shock peening on surface properties and residual stress of Al6061-T6","volume":"77","author":"Salimianrizi","year":"2016","journal-title":"Opt. Lasers Eng."},{"key":"10.1016\/j.compind.2023.104060_bib30","doi-asserted-by":"crossref","first-page":"6037","DOI":"10.1007\/s10462-022-10148-x","article-title":"Attention, please! A survey of neural attention models in deep learning","volume":"55","author":"de Santana Correia","year":"2022","journal-title":"Artif. Intell. Rev."},{"key":"10.1016\/j.compind.2023.104060_bib31","first-page":"598","article-title":"Acoustic emission for in situ quality monitoring in additive manufacturing using spectral convolutional neural networks","volume":"21","author":"Shevchik","year":"2018","journal-title":"Addit. Manuf."},{"key":"10.1016\/j.compind.2023.104060_bib32","unstructured":"Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, \u0141., Polosukhin, I., 2017. Attention is all you need. Advances in neural information processing systems 30."},{"key":"10.1016\/j.compind.2023.104060_bib33","doi-asserted-by":"crossref","unstructured":"Wiegreffe, S., Pinter, Y., 2019. Attention is not not explanation. arXiv preprint arXiv:1908.04626.","DOI":"10.18653\/v1\/D19-1002"},{"key":"10.1016\/j.compind.2023.104060_bib34","first-page":"3","article-title":"Cbam: convolutional block attention module","author":"Woo","year":"2018","journal-title":"Proc. Eur. Conf. Comput. Vis. (ECCV)"},{"key":"10.1016\/j.compind.2023.104060_bib35","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1016\/j.jmsy.2022.06.002","article-title":"Toward cognitive predictive maintenance: a survey of graph-based approaches","volume":"64","author":"Xia","year":"2022","journal-title":"J. Manuf. Syst."},{"key":"10.1016\/j.compind.2023.104060_bib36","doi-asserted-by":"crossref","DOI":"10.1016\/j.ymssp.2022.109990","article-title":"Attention-based interpretable prototypical network towards small-sample damage identification using ultrasonic guided waves","volume":"188","author":"Zhang","year":"2023","journal-title":"Mech. Syst. Signal Process."},{"key":"10.1016\/j.compind.2023.104060_bib37","doi-asserted-by":"crossref","first-page":"1697","DOI":"10.1016\/j.matdes.2008.07.017","article-title":"Effect of laser shock processing on the mechanical properties and fatigue lives of the turbojet engine blades manufactured by LY2 aluminum alloy","volume":"30","author":"Zhang","year":"2009","journal-title":"Mater. Des."},{"key":"10.1016\/j.compind.2023.104060_bib38","doi-asserted-by":"crossref","DOI":"10.1016\/j.jmatprotec.2022.117515","article-title":"Deep learning-based monitoring of surface residual stress and efficient sensing of AE for laser shock peening","volume":"303","author":"Zhang","year":"2022","journal-title":"J. Mater. Process. Technol."},{"key":"10.1016\/j.compind.2023.104060_bib39","article-title":"A novel approach for surface integrity monitoring in high-energy nanosecond-pulse laser shock peening: acoustic emission and hybrid-attention CNN","author":"Zhang","year":"2022","journal-title":"IEEE Trans. Ind. Inform."},{"key":"10.1016\/j.compind.2023.104060_bib40","first-page":"1","article-title":"Online evaluation of surface hardness for aluminum alloy in LSP using modal acoustic emission","volume":"71","author":"Zhang","year":"2022","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.compind.2023.104060_bib41","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1016\/j.ins.2020.07.048","article-title":"Interpretable duplicate question detection models based on attention mechanism","volume":"543","author":"Zhou","year":"2021","journal-title":"Inf. Sci."}],"container-title":["Computers in Industry"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0166361523002105?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0166361523002105?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,12,30]],"date-time":"2023-12-30T08:09:05Z","timestamp":1703923745000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0166361523002105"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,2]]},"references-count":41,"alternative-id":["S0166361523002105"],"URL":"https:\/\/doi.org\/10.1016\/j.compind.2023.104060","relation":{},"ISSN":["0166-3615"],"issn-type":[{"type":"print","value":"0166-3615"}],"subject":[],"published":{"date-parts":[[2024,2]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A novel physically interpretable end-to-end network for stress monitoring in laser shock peening","name":"articletitle","label":"Article Title"},{"value":"Computers in Industry","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compind.2023.104060","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier B.V. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"104060"}}