{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T04:13:10Z","timestamp":1740111190489,"version":"3.37.3"},"reference-count":67,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,6,13]],"date-time":"2022-06-13T00:00:00Z","timestamp":1655078400000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/100012338","name":"Alan Turing Institute","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100012338","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers, Environment and Urban Systems"],"published-print":{"date-parts":[[2022,9]]},"DOI":"10.1016\/j.compenvurbsys.2022.101845","type":"journal-article","created":{"date-parts":[[2022,6,18]],"date-time":"2022-06-18T03:32:35Z","timestamp":1655523155000},"page":"101845","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":295,"special_numbering":"C","title":["Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost"],"prefix":"10.1016","volume":"96","author":[{"given":"Ziqi","family":"Li","sequence":"first","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0005","article-title":"Peeking inside the black-box: Explainable machine learning applied to household transportation energy consumption","volume":"88","author":"Amiri","year":"2021","journal-title":"Computers, Environment and Urban Systems"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0010","series-title":"Spatial econometrics: Methods and models","volume":"Vol. 4","author":"Anselin","year":"1988"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0015","doi-asserted-by":"crossref","DOI":"10.1016\/j.jtrangeo.2020.102918","article-title":"Not minding the gap: Does ride-hailing serve transit deserts?","volume":"90","author":"Barajas","year":"2021","journal-title":"Journal of Transport Geography"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0020","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1016\/j.jedc.2014.06.011","article-title":"Modeling regional economic dynamics: Spatial dependence, spatial heterogeneity and nonlinearities","volume":"48","author":"Basile","year":"2014","journal-title":"Journal of Economic Dynamics and Control"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0025","series-title":"International conference on machine learning","first-page":"115","article-title":"Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures","author":"Bergstra","year":"2013"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0030","doi-asserted-by":"crossref","DOI":"10.1016\/j.comnet.2020.107530","article-title":"Machine learning-based traffic prediction models for intelligent transportation systems","volume":"181","author":"Boukerche","year":"2020","journal-title":"Computer Networks"},{"issue":"7","key":"10.1016\/j.compenvurbsys.2022.101845_bb0035","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pmed.0050151","article-title":"Surveillance sans Frontieres: Internet-based emerging infectious disease intelligence and the HealthMap project","volume":"5","author":"Brownstein","year":"2008","journal-title":"PLoS Medicine"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0040","doi-asserted-by":"crossref","first-page":"807","DOI":"10.1613\/jair.1.12162","article-title":"Mapping the landscape of artificial intelligence applications against COVID-19","volume":"69","author":"Bullock","year":"2020","journal-title":"Journal of Artificial Intelligence Research"},{"issue":"4","key":"10.1016\/j.compenvurbsys.2022.101845_bb0045","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1038\/nmeth.4642","article-title":"Statistics versus machine learning","volume":"15","author":"Bzdok","year":"2018","journal-title":"Nature Methods"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0050","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.114498","article-title":"Interpretable vs. noninterpretable machine learning models for data-driven hydro-climatological process modeling","volume":"170","author":"Chakraborty","year":"2021","journal-title":"Expert Systems with Applications"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0055","series-title":"Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining","first-page":"785","article-title":"Xgboost: A scalable tree boosting system","author":"Chen","year":"2016"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0060","article-title":"How and why we built a custom gradient boosted-tree package","author":"Cohen","year":"2021","journal-title":"Lyft Engineering."},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0065","series-title":"2016 IEEE symposium on security and privacy (SP)","first-page":"598","article-title":"Algorithmic transparency via quantitative input influence: Theory and experiments with learning systems","author":"Datta","year":"2016"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0070","doi-asserted-by":"crossref","DOI":"10.1016\/j.jtrangeo.2020.102944","article-title":"Spatial variation in shared ride-hail trip demand and factors contributing to sharing: Lessons from Chicago","volume":"91","author":"Dean","year":"2021","journal-title":"Journal of Transport Geography"},{"issue":"7","key":"10.1016\/j.compenvurbsys.2022.101845_bb0075","doi-asserted-by":"crossref","first-page":"1353","DOI":"10.1080\/13658816.2019.1707834","article-title":"Geographically neural network weighted regression for the accurate estimation of spatial non-stationarity","volume":"34","author":"Du","year":"2020","journal-title":"International Journal of Geographical Information Science"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0080","series-title":"Breakthroughs in statistics","first-page":"569","article-title":"Bootstrap methods: Another look at the jackknife","author":"Efron","year":"1992"},{"author":"Fedus","key":"10.1016\/j.compenvurbsys.2022.101845_bb0085"},{"year":"2003","series-title":"Geographically weighted regression: The analysis of spatially varying relationships","author":"Fotheringham","key":"10.1016\/j.compenvurbsys.2022.101845_bb0090"},{"issue":"6","key":"10.1016\/j.compenvurbsys.2022.101845_bb0095","doi-asserted-by":"crossref","first-page":"1247","DOI":"10.1080\/24694452.2017.1352480","article-title":"Multiscale geographically weighted regression (MGWR)","volume":"107","author":"Fotheringham","year":"2017","journal-title":"Annals of the American Association of Geographers"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0100","first-page":"1189","article-title":"Greedy function approximation: A gradient boosting machine","author":"Friedman","year":"2001","journal-title":"Annals of Statistics"},{"issue":"3","key":"10.1016\/j.compenvurbsys.2022.101845_bb0105","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1609\/aimag.v38i3.2741","article-title":"European Union regulations on algorithmic decision-making and a \u201cright to explanation\u201d","volume":"38","author":"Goodman","year":"2017","journal-title":"AI Magazine"},{"issue":"2","key":"10.1016\/j.compenvurbsys.2022.101845_bb0110","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1609\/aimag.v40i2.2850","article-title":"DARPA\u2019s explainable artificial intelligence (XAI) program","volume":"40","author":"Gunning","year":"2019","journal-title":"AI Magazine"},{"issue":"2","key":"10.1016\/j.compenvurbsys.2022.101845_bb0115","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1111\/gean.12163","article-title":"A simulation study on specifying a regression model for spatial data: Choosing between autocorrelation and heterogeneity effects","volume":"51","author":"Harris","year":"2019","journal-title":"Geographical Analysis"},{"issue":"6","key":"10.1016\/j.compenvurbsys.2022.101845_bb0120","doi-asserted-by":"crossref","first-page":"657","DOI":"10.1007\/s11004-010-9284-7","article-title":"The use of geographically weighted regression for spatial prediction: An evaluation of models using simulated data sets","volume":"42","author":"Harris","year":"2010","journal-title":"Mathematical Geosciences"},{"year":"1990","series-title":"Generalized additive models","author":"Hastie","key":"10.1016\/j.compenvurbsys.2022.101845_bb0125"},{"issue":"11","key":"10.1016\/j.compenvurbsys.2022.101845_bb0130","doi-asserted-by":"crossref","first-page":"2116","DOI":"10.3390\/rs13112116","article-title":"Knowledge-driven GeoAI: Integrating spatial knowledge into multi-scale deep learning for Mars crater detection","volume":"13","author":"Hsu","year":"2021","journal-title":"Remote Sensing"},{"issue":"3","key":"10.1016\/j.compenvurbsys.2022.101845_bb0135","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1190\/tle36030249.1","article-title":"A scalable deep learning platform for identifying geologic features from seismic attributes","volume":"36","author":"Huang","year":"2017","journal-title":"The Leading Edge"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0140","doi-asserted-by":"crossref","DOI":"10.1016\/j.atmosenv.2020.117649","article-title":"Advancing methodologies for applying machine learning and evaluating spatiotemporal models of fine particulate matter (PM2. 5) using satellite data over large regions","volume":"239","author":"Just","year":"2020","journal-title":"Atmospheric Environment"},{"issue":"1","key":"10.1016\/j.compenvurbsys.2022.101845_bb0145","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1111\/1467-9876.00385","article-title":"Geoadditive models","volume":"52","author":"Kammann","year":"2003","journal-title":"Journal of the Royal Statistical Society: Series C: Applied Statistics"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0150","first-page":"71","article-title":"GeoAI: Where machine learning and big data converge in GIScience","volume":"20","author":"Li","year":"2020","journal-title":"Journal of Spatial Information Science"},{"issue":"7","key":"10.1016\/j.compenvurbsys.2022.101845_bb0155","doi-asserted-by":"crossref","first-page":"1378","DOI":"10.1080\/13658816.2020.1720692","article-title":"Computational improvements to multi-scale geographically weighted regression","volume":"34","author":"Li","year":"2020","journal-title":"International Journal of Geographical Information Science"},{"issue":"4","key":"10.1016\/j.compenvurbsys.2022.101845_bb0160","doi-asserted-by":"crossref","first-page":"319","DOI":"10.1002\/asmb.446","article-title":"Analysis of regression in game theory approach","volume":"17","author":"Lipovetsky","year":"2001","journal-title":"Applied Stochastic Models in Business and Industry"},{"author":"Lundberg","key":"10.1016\/j.compenvurbsys.2022.101845_bb0165"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0170","first-page":"30","article-title":"A unified approach to interpreting model predictions","author":"Lundberg","year":"2017","journal-title":"Advances in Neural Information Processing Systems"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0175","doi-asserted-by":"crossref","DOI":"10.1016\/j.cities.2020.102926","article-title":"Spatial distribution of ride-hailing trip demand and its association with walkability and neighborhood characteristics","volume":"106","author":"Marquet","year":"2020","journal-title":"Cities"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0180","series-title":"A guide for making black box models explainable","article-title":"Interpretable machine learning","author":"Molnar","year":"2020"},{"issue":"1","key":"10.1016\/j.compenvurbsys.2022.101845_bb0185","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1111\/gean.12156","article-title":"Eigenvector spatial filtering for large data sets: Fixed and random effects approaches","volume":"51","author":"Murakami","year":"2019","journal-title":"Geographical Analysis"},{"issue":"11","key":"10.1016\/j.compenvurbsys.2022.101845_bb0190","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pmed.1002709","article-title":"Characterising risk of in-hospital mortality following cardiac arrest using machine learning: A retrospective international registry study","volume":"15","author":"Nanayakkara","year":"2018","journal-title":"PLoS Medicine"},{"issue":"6","key":"10.1016\/j.compenvurbsys.2022.101845_bb0195","doi-asserted-by":"crossref","first-page":"269","DOI":"10.3390\/ijgi8060269","article-title":"Mgwr: A Python implementation of multiscale geographically weighted regression for investigating process spatial heterogeneity and scale","volume":"8","author":"Oshan","year":"2019","journal-title":"ISPRS International Journal of Geo-Information"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0200","series-title":"IOP conference series: earth and environmental science","first-page":"012127","article-title":"Application of XGBoost algorithm in hourly PM2. 5 concentration prediction","volume":"Vol. 113, No. 1","author":"Pan","year":"2018"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0205","doi-asserted-by":"crossref","DOI":"10.1016\/j.physa.2021.125873","article-title":"A machine learning approach for modelling parking duration in urban land-use","volume":"572","author":"Parmar","year":"2021","journal-title":"Physica A: Statistical Mechanics and its Applications"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0210","doi-asserted-by":"crossref","DOI":"10.1016\/j.aap.2019.105405","article-title":"Toward safer highways, application of XGBoost and SHAP for real-time accident detection and feature analysis","volume":"136","author":"Parsa","year":"2020","journal-title":"Accident Analysis & Prevention"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0215","article-title":"The PySAL ecosystem: Philosophy and Implementation","author":"Rey","year":"2021","journal-title":"Geographical Analysis"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0220","series-title":"Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining","first-page":"1135","article-title":"\u201c Why should i trust you?\u201d Explaining the predictions of any classifier","author":"Ribeiro","year":"2016"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0225","article-title":"Are we modelling spatially varying processes or non-linear relationships?","author":"Sachdeva","year":"2021","journal-title":"Geographical Analysis"},{"issue":"4","key":"10.1016\/j.compenvurbsys.2022.101845_bb0230","doi-asserted-by":"crossref","first-page":"549","DOI":"10.1109\/LGRS.2017.2657778","article-title":"Training deep convolutional neural networks for land\u2013cover classification of high-resolution imagery","volume":"14","author":"Scott","year":"2017","journal-title":"IEEE Geoscience and Remote Sensing Letters"},{"issue":"3","key":"10.1016\/j.compenvurbsys.2022.101845_bb0235","doi-asserted-by":"crossref","first-page":"284","DOI":"10.1111\/gean.12054","article-title":"Application of LASSO to the eigenvector selection problem in eigenvector-based spatial filtering","volume":"47","author":"Seya","year":"2015","journal-title":"Geographical Analysis"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0240","series-title":"17. A value for n-person games","first-page":"307","author":"Shapley","year":"1953"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0245","series-title":"International Conference on Machine Learning","first-page":"3145","article-title":"Learning important features through propagating activation differences","author":"Shrikumar","year":"2017"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0250","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1016\/j.inffus.2021.11.011","article-title":"Tabular data: Deep learning is not all you need","volume":"81","author":"Shwartz-Ziv","year":"2022","journal-title":"Information Fusion"},{"author":"Simonyan","key":"10.1016\/j.compenvurbsys.2022.101845_bb0255"},{"issue":"1","key":"10.1016\/j.compenvurbsys.2022.101845_bb0260","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/1471-2105-8-25","article-title":"Bias in random forest variable importance measures: Illustrations, sources and a solution","volume":"8","author":"Strobl","year":"2007","journal-title":"BMC Bioinformatics"},{"issue":"3","key":"10.1016\/j.compenvurbsys.2022.101845_bb0265","doi-asserted-by":"crossref","first-page":"647","DOI":"10.1007\/s10115-013-0679-x","article-title":"Explaining prediction models and individual predictions with feature contributions","volume":"41","author":"\u0160trumbelj","year":"2014","journal-title":"Knowledge and Information Systems"},{"issue":"14","key":"10.1016\/j.compenvurbsys.2022.101845_bb0270","doi-asserted-by":"crossref","first-page":"1986","DOI":"10.1093\/bioinformatics\/btr300","article-title":"Classification with correlated features: Unreliability of feature ranking and solutions","volume":"27","author":"Tolo\u015fi","year":"2011","journal-title":"Bioinformatics"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0275","doi-asserted-by":"crossref","DOI":"10.1016\/j.rse.2019.111322","article-title":"Land-cover classification with high-resolution remote sensing images using transferable deep models","volume":"237","author":"Tong","year":"2020","journal-title":"Remote Sensing of Environment"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0280","doi-asserted-by":"crossref","DOI":"10.1016\/j.ecolind.2021.108200","article-title":"Evaluation of the factors explaining the use of agricultural land: A machine learning and model-agnostic approach","volume":"131","author":"Viana","year":"2021","journal-title":"Ecological Indicators"},{"issue":"3","key":"10.1016\/j.compenvurbsys.2022.101845_bb0285","doi-asserted-by":"crossref","first-page":"535","DOI":"10.1080\/00045601003791243","article-title":"A CyberGIS framework for the synthesis of cyberinfrastructure, GIS, and spatial analysis","volume":"100","author":"Wang","year":"2010","journal-title":"Annals of the Association of American Geographers"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0290","series-title":"Joint European conference on machine learning and knowledge discovery in databases","first-page":"515","article-title":"Learning to detect patterns of crime","author":"Wang","year":"2013"},{"year":"2006","series-title":"Generalized additive models: An introduction with R. chapman and hall\/CRC","author":"Wood","key":"10.1016\/j.compenvurbsys.2022.101845_bb0295"},{"issue":"3","key":"10.1016\/j.compenvurbsys.2022.101845_bb0300","doi-asserted-by":"crossref","first-page":"620","DOI":"10.1111\/tgis.12547","article-title":"A spatially explicit reinforcement learning model for geographic knowledge graph summarization","volume":"23","author":"Yan","year":"2019","journal-title":"Transactions in GIS"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0305","doi-asserted-by":"crossref","DOI":"10.1016\/j.jtrangeo.2020.102661","article-title":"Using machine learning for direct demand modeling of ridesourcing services in Chicago","volume":"83","author":"Yan","year":"2020","journal-title":"Journal of Transport Geography"},{"author":"Yosinski","key":"10.1016\/j.compenvurbsys.2022.101845_bb0310"},{"issue":"1","key":"10.1016\/j.compenvurbsys.2022.101845_bb0315","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1111\/gean.12189","article-title":"Inference in multiscale geographically weighted regression","volume":"52","author":"Yu","year":"2020","journal-title":"Geographical Analysis"},{"issue":"7","key":"10.1016\/j.compenvurbsys.2022.101845_bb0320","doi-asserted-by":"crossref","first-page":"373","DOI":"10.3390\/atmos10070373","article-title":"PM2. 5 prediction based on random forest, XGBoost, and deep learning using multisource remote sensing data","volume":"10","author":"Zamani Joharestani","year":"2019","journal-title":"Atmosphere"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0325","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1016\/j.atmosenv.2017.02.023","article-title":"Spatiotemporal prediction of continuous daily PM2. 5 concentrations across China using a spatially explicit machine learning algorithm","volume":"155","author":"Zhan","year":"2017","journal-title":"Atmospheric Environment"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bib331","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1016\/j.isprsjprs.2019.04.017","article-title":"Social sensing from street-level imagery: A case study in learning spatio-temporal urban mobility patterns","volume":"153","author":"Zhang","year":"2019","journal-title":"ISPRS journal of photogrammetry and remote sensing"},{"key":"10.1016\/j.compenvurbsys.2022.101845_bb0330","doi-asserted-by":"crossref","first-page":"308","DOI":"10.1016\/j.trc.2015.02.019","article-title":"A gradient boosting method to improve travel time prediction","volume":"58","author":"Zhang","year":"2015","journal-title":"Transportation Research Part C: Emerging Technologies"}],"container-title":["Computers, Environment and Urban Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0198971522000898?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0198971522000898?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,25]],"date-time":"2024-01-25T09:09:53Z","timestamp":1706173793000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0198971522000898"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,9]]},"references-count":67,"alternative-id":["S0198971522000898"],"URL":"https:\/\/doi.org\/10.1016\/j.compenvurbsys.2022.101845","relation":{},"ISSN":["0198-9715"],"issn-type":[{"type":"print","value":"0198-9715"}],"subject":[],"published":{"date-parts":[[2022,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost","name":"articletitle","label":"Article Title"},{"value":"Computers, Environment and Urban Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compenvurbsys.2022.101845","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 The Author(s). Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"101845"}}