{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T13:50:11Z","timestamp":1725889811046},"reference-count":47,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T00:00:00Z","timestamp":1654041600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers, Environment and Urban Systems"],"published-print":{"date-parts":[[2022,6]]},"DOI":"10.1016\/j.compenvurbsys.2022.101801","type":"journal-article","created":{"date-parts":[[2022,3,31]],"date-time":"2022-03-31T17:01:23Z","timestamp":1648746083000},"page":"101801","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"C","title":["Machine learning application to spatio-temporal modeling of urban growth"],"prefix":"10.1016","volume":"94","author":[{"given":"Yuna","family":"Kim","sequence":"first","affiliation":[]},{"given":"Abolfazl","family":"Safikhani","sequence":"additional","affiliation":[]},{"given":"Emre","family":"Tepe","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0005","author":"Allaire"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0010","author":"Allaire"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0015","series-title":"Spatial econometrics: Methods and models","author":"Anselin","year":"1988"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0020","series-title":"Advances in neural information processing systems","first-page":"3491","article-title":"Fast multivariate spatio-temporal analysis via low rank tensor learning","author":"Bahadori","year":"2014"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0025","doi-asserted-by":"crossref","first-page":"160","DOI":"10.1016\/j.apgeog.2014.06.016","article-title":"Land use changes modelling using advanced methods: Cellular automata and artificial neural networks. the spatial and explicit representation of land cover dynamics at the cross-border region scale","volume":"53","author":"Basse","year":"2014","journal-title":"Applied Geography"},{"issue":"5","key":"10.1016\/j.compenvurbsys.2022.101801_bb0030","doi-asserted-by":"crossref","first-page":"801","DOI":"10.1111\/jors.12201","article-title":"A new spatial multiple discrete-continuous modeling approach to land use change analysis","volume":"55","author":"Bhat","year":"2015","journal-title":"Journal of Regional Science"},{"issue":"1","key":"10.1016\/j.compenvurbsys.2022.101801_bb0035","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"450","author":"Breiman","year":"2001","journal-title":"Machine Learning"},{"issue":"4","key":"10.1016\/j.compenvurbsys.2022.101801_bb0040","doi-asserted-by":"crossref","first-page":"889","DOI":"10.1111\/j.0002-9092.2004.00641.x","article-title":"Determinants of residential land-use conversion and sprawl at the rural-urban fringe","volume":"86","author":"Carrion-Flores","year":"2004","journal-title":"American Journal of Agricultural Economics"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0045","series-title":"Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining","first-page":"785","article-title":"Xgboost: A scalable tree boosting system","author":"Chen","year":"2016"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0050","author":"Chen"},{"issue":"3","key":"10.1016\/j.compenvurbsys.2022.101801_bb0055","doi-asserted-by":"crossref","first-page":"487","DOI":"10.1093\/wber\/10.3.487","article-title":"Roads, land use, and deforestation: A spatial model applied to Belize","volume":"10","author":"Chomitz","year":"1996","journal-title":"The World Bank Economic Review"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0060","doi-asserted-by":"crossref","first-page":"1241","DOI":"10.1007\/s10115-018-1291-x","article-title":"Spatio-temporal neural networks for space-time data modeling and relation discovery","volume":"61","author":"Delasalles","year":"2019","journal-title":"Knowledge and Information Systems"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0065","author":"Fan"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0070","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10109-012-0165-0","article-title":"A spatial panel ordered-response model with application to the analysis of urban land-use development intensity patterns","volume":"15","author":"Ferdous","year":"2013","journal-title":"Journal of Geographical Systems"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0075","series-title":"Advances in spatial econometrics","first-page":"145","article-title":"Techniques for estimating spatially dependent discrete choice models","author":"Fleming","year":"2004"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0080","doi-asserted-by":"crossref","first-page":"101459","DOI":"10.1016\/j.compenvurbsys.2020.101459","article-title":"Modeling urban growth using spatially heterogeneous cellular automata models: Comparison of spatial lag, spatial error and gwr","volume":"81","author":"Gao","year":"2020","journal-title":"Computers, Environment and Urban Systems"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0085","doi-asserted-by":"crossref","first-page":"320","DOI":"10.1016\/j.scitotenv.2018.07.302","article-title":"A random forest-cellular automata modelling approach to explore future land use\/cover change in Attica (Greece), under different socio-economic realities and scales","volume":"646","author":"Gounaridis","year":"2019","journal-title":"Science of the Total Environment"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0090","series-title":"2016 7th ieee international conference on software engineering and service science (icsess)","first-page":"219","article-title":"Variable selection using mean decrease accuracy and mean decrease gini based on random forest","author":"Han","year":"2016"},{"issue":"8","key":"10.1016\/j.compenvurbsys.2022.101801_bb0095","doi-asserted-by":"crossref","first-page":"3404","DOI":"10.1021\/ct400195d","article-title":"Assessment and validation of machine learning methods for predicting molecular atomization energies","volume":"9","author":"Hansen","year":"2013","journal-title":"Journal of Chemical Theory and Computation"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0100","series-title":"The elements of statistical learning: Data mining, inference, and prediction","author":"Hastie","year":"2009"},{"issue":"3","key":"10.1016\/j.compenvurbsys.2022.101801_bb0105","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1080\/13658810802119685","article-title":"Spatiotemporal analysis of rural-urban land conversion","volume":"23","author":"Huang","year":"2009","journal-title":"International Journal of Geographical Information Science"},{"issue":"1","key":"10.1016\/j.compenvurbsys.2022.101801_bb0110","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1017\/S1068280500002525","article-title":"Modeling and managing urban growth at the rural-urban fringe: A parcel-level model of residential land use change","volume":"32","author":"Irwin","year":"2003","journal-title":"Agricultural and Resource Economics Review"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0115","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1016\/S0167-8809(01)00200-6","article-title":"Theory, data, methods: Developing spatially explicit economic models of land use change","volume":"85","author":"Irwin","year":"2001","journal-title":"Agriculture, Ecosystems and Environment"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0120","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/j.compenvurbsys.2019.01.001","article-title":"An enhanced support vector machine model for urban expansion prediction","volume":"75","author":"Karimi","year":"2019","journal-title":"Computers, Environment and Urban Systems"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0125","author":"Kingma"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0130","doi-asserted-by":"crossref","first-page":"102045","DOI":"10.1016\/j.scs.2020.102045","article-title":"Multi-scenario simulation of urban land change in shanghai by random forest and ca-markov model","volume":"55","author":"Liang","year":"2020","journal-title":"Sustainable Cities and Society"},{"issue":"3","key":"10.1016\/j.compenvurbsys.2022.101801_bb0135","first-page":"18","article-title":"Classification and regression by randomforest","volume":"2","author":"Liaw","year":"2002","journal-title":"R News"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0140","doi-asserted-by":"crossref","first-page":"103044","DOI":"10.1016\/j.cities.2020.103044","article-title":"Simulating urban expansion by incorporating an integrated gravitational field model into a demand-driven random forest-cellular automata model","volume":"109","author":"Lv","year":"2021","journal-title":"Cities"},{"issue":"1\/2","key":"10.1016\/j.compenvurbsys.2022.101801_bb0145","doi-asserted-by":"crossref","first-page":"17","DOI":"10.2307\/2332142","article-title":"Notes on continuous stochastic phenomena","volume":"37","author":"Moran","year":"1950","journal-title":"Biometrika"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0150","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/j.landurbplan.2012.04.006","article-title":"Land-cover change to forest plantations: Proximate causes and implications for the landscape in south-Central Chile","volume":"107","author":"Nahuelhual","year":"2012","journal-title":"Landscape and Urban Planning"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0155","series-title":"Rectified linear units improve restricted boltzmann machines","author":"Nair","year":"2010"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0160","author":"Nwankpa"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0165","doi-asserted-by":"crossref","first-page":"100461","DOI":"10.1016\/j.rsase.2020.100461","article-title":"Integrating machine learning with markov chain and cellular automata models for modelling urban land use change","volume":"21","author":"Okwuashi","year":"2021","journal-title":"Remote Sensing Applications: Society and Environment"},{"issue":"349","key":"10.1016\/j.compenvurbsys.2022.101801_bb0170","doi-asserted-by":"crossref","first-page":"120","DOI":"10.1080\/01621459.1975.10480272","article-title":"Estimation methods for models of spatial interaction","volume":"20","author":"Ord","year":"1975","journal-title":"Journal of the American Statistical Association"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0175","series-title":"Urban economics","author":"O\u2019Sullivan","year":"2012"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0180","doi-asserted-by":"crossref","first-page":"104239","DOI":"10.1016\/j.landurbplan.2021.104239","article-title":"Leveraging machine learning to understand urban change with net construction","volume":"216","author":"Ron-Ferguson","year":"2021","journal-title":"Landscape and Urban Planning"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0185","doi-asserted-by":"crossref","first-page":"101595","DOI":"10.1016\/j.compenvurbsys.2021.101595","article-title":"Integrating a forward feature selection algorithm, random forest, and cellular automata to extrapolate urban growth in the tehran-karaj region of iran","volume":"87","author":"Shafizadeh-Moghadam","year":"2021","journal-title":"Computers, Environment and Urban Systems"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0190","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.envsoft.2013.01.010","article-title":"A hybrid analytical-heuristic method for calibrating land-use change models","volume":"43","author":"Soares-Filho","year":"2013","journal-title":"Environmental Modelling & Software"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0195","doi-asserted-by":"crossref","first-page":"107612","DOI":"10.1016\/j.ecolind.2021.107612","article-title":"Modeling fragmentation probability of land-use and land-cover using the bagging, random forest and random subspace in the teesta river basin, bangladesh","volume":"126","author":"Talukdar","year":"2021","journal-title":"Ecological Indicators"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0200","doi-asserted-by":"crossref","first-page":"204","DOI":"10.1016\/j.compenvurbsys.2017.02.005","article-title":"Spatial and temporal modeling of parcel-level land dynamics","volume":"64","author":"Tepe","year":"2017","journal-title":"Computers, Environment and Urban Systems"},{"issue":"3","key":"10.1016\/j.compenvurbsys.2022.101801_bb0205","first-page":"473","article-title":"Spatio-temporal multinomial autologistic modeling of land-use change: A parcel-level approach","volume":"47","author":"Tepe","year":"2020","journal-title":"Environment and Planning B: Urban Analytics and City Science"},{"issue":"11","key":"10.1016\/j.compenvurbsys.2022.101801_bb0210","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0224365","article-title":"Machine learning algorithm validation with a limited sample size","volume":"14","author":"Vabalas","year":"2019","journal-title":"PLoS One"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0215","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1068\/b307","article-title":"Determinants of land-use change patterns in The Netherlands","volume":"31","author":"Verburg","year":"2004","journal-title":"Environment and Planning. B, Planning & Design"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0220","doi-asserted-by":"crossref","first-page":"104430","DOI":"10.1016\/j.cageo.2020.104430","article-title":"A novel cellular automata model integrated with deep learning for dynamic spatio-temporal land use change simulation","volume":"137","author":"Xing","year":"2020","journal-title":"Computers & Geosciences"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0225","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/j.habitatint.2015.09.007","article-title":"Urban land use change and regional access: A case study in Beijing, China","volume":"51","author":"Yu","year":"2016","journal-title":"Habitat International"},{"key":"10.1016\/j.compenvurbsys.2022.101801_bb0230","doi-asserted-by":"crossref","first-page":"101689","DOI":"10.1016\/j.compenvurbsys.2021.101689","article-title":"Calibration of cellular automata urban growth models from urban genesis onwards - a novel application of markov chain monte carlo approximate bayesian computation","volume":"90","author":"Yu","year":"2021","journal-title":"Computers, Environment and Urban Systems"},{"issue":"7","key":"10.1016\/j.compenvurbsys.2022.101801_bb0235","doi-asserted-by":"crossref","first-page":"1475","DOI":"10.1080\/13658816.2020.1711915","article-title":"Simulating urban land use change by integrating a convolutional neural network with vector-based cellular automata","volume":"34","author":"Zhai","year":"2020","journal-title":"International Journal of Geographical Information Science"}],"container-title":["Computers, Environment and Urban Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S019897152200045X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S019897152200045X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,25]],"date-time":"2024-01-25T09:07:00Z","timestamp":1706173620000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S019897152200045X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6]]},"references-count":47,"alternative-id":["S019897152200045X"],"URL":"https:\/\/doi.org\/10.1016\/j.compenvurbsys.2022.101801","relation":{},"ISSN":["0198-9715"],"issn-type":[{"value":"0198-9715","type":"print"}],"subject":[],"published":{"date-parts":[[2022,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Machine learning application to spatio-temporal modeling of urban growth","name":"articletitle","label":"Article Title"},{"value":"Computers, Environment and Urban Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compenvurbsys.2022.101801","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"101801"}}