{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T18:42:42Z","timestamp":1735584162377},"reference-count":37,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2018,9,1]],"date-time":"2018-09-01T00:00:00Z","timestamp":1535760000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"funder":[{"DOI":"10.13039\/501100002367","name":"Chinese Academy of Sciences","doi-asserted-by":"publisher","award":["ZDRW-ZS-2016-6-3"],"id":[{"id":"10.13039\/501100002367","id-type":"DOI","asserted-by":"publisher"}]},{"name":"State Key Research Development Program of China","award":["2016YFB0502104"]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers, Environment and Urban Systems"],"published-print":{"date-parts":[[2018,9]]},"DOI":"10.1016\/j.compenvurbsys.2018.05.009","type":"journal-article","created":{"date-parts":[[2018,5,28]],"date-time":"2018-05-28T19:48:57Z","timestamp":1527536937000},"page":"186-198","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":114,"special_numbering":"C","title":["Short-term traffic forecasting: An adaptive ST-KNN model that considers spatial heterogeneity"],"prefix":"10.1016","volume":"71","author":[{"given":"Shifen","family":"Cheng","sequence":"first","affiliation":[]},{"given":"Feng","family":"Lu","sequence":"additional","affiliation":[]},{"given":"Peng","family":"Peng","sequence":"additional","affiliation":[]},{"given":"Sheng","family":"Wu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0005","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1002\/for.3980080103","article-title":"Operational filtering of traffic data","volume":"8","author":"Ahmed","year":"1989","journal-title":"Journal of Forecasting"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0010","doi-asserted-by":"crossref","first-page":"583","DOI":"10.1016\/j.ijforecast.2006.04.006","article-title":"Findings from evidence based forecasting: Methods for reducing forecast error","volume":"22","author":"Armstrong","year":"2006","journal-title":"International Journal of Forecasting"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0015","doi-asserted-by":"crossref","first-page":"127","DOI":"10.3141\/2243-15","article-title":"Real-time freeway-experienced travel time prediction using N-curve and k nearest neighbor methods","volume":"2243","author":"Bustillos","year":"2011","journal-title":"Transpotation Research Record Journal Transportatoin Research Board"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0020","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1016\/j.trc.2015.11.002","article-title":"A spatiotemporal correlative k-nearest neighbor model for short-term traffic multistep forecasting","volume":"62","author":"Cai","year":"2016","journal-title":"Transportation Research Part C Emerging Technologies"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0025","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1080\/15472450902858368","article-title":"Predictions of freeway traffic speeds and volumes using vector autoregressive models","volume":"13","author":"Chandra","year":"2009","journal-title":"Journal of Intelligent Tranportation Systems: Technology, Planning, and Operations"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0030","doi-asserted-by":"crossref","first-page":"292","DOI":"10.1049\/iet-its.2011.0123","article-title":"Dynamic near-term traffic flow prediction: System-oriented approach based on past experiences","volume":"6","author":"Chang","year":"2012","journal-title":"IET Intelligent Transport Systems"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0035","doi-asserted-by":"crossref","first-page":"187","DOI":"10.3390\/ijgi6070187","article-title":"A two-step method for missing Spatio-temporal data reconstruction","volume":"6","author":"Cheng","year":"2017","journal-title":"ISPRS International Journal Geo-Information"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0040","doi-asserted-by":"crossref","first-page":"389","DOI":"10.1007\/s10109-011-0149-5","article-title":"Spatio-temporal autocorrelation of road network data","volume":"14","author":"Cheng","year":"2012","journal-title":"Journal of Geographical Systems"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0045","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1111\/gean.12026","article-title":"A dynamic spatial weight matrix and localized space-time autoregressive integrated moving average for network modeling","volume":"46","author":"Cheng","year":"2014","journal-title":"Geographical Analysis"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0050","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1061\/(ASCE)0733-947X(2003)129:2(161)","article-title":"Traffic prediction using multivariate nonparametric regression","volume":"129","author":"Clark","year":"2003","journal-title":"Journal of Transportation Engineering"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0055","series-title":"IEEE conference on intelligent transportation systems, proceedings, ITSC. IEEE","first-page":"1610","article-title":"STARIMA-based traffic prediction with time-varying lags","author":"Duan","year":"2016"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0060","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1207\/s15516709cog1402_1","article-title":"Finding structure in time","volume":"14","author":"Elman","year":"1990","journal-title":"Cognitive Science"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0065","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1016\/j.trc.2016.10.019","article-title":"Short-term speed predictions exploiting big data on large urban road networks","volume":"73","author":"Fusco","year":"2016","journal-title":"Transportation Research Part C Emerging Technologies"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0070","first-page":"15","article-title":"Methodology for quantifying incident-induced delays on freeways by grouping similar traffic patterns","author":"Habtemichael","year":"2015","journal-title":"Transportation Research Board 94th Annual Meeting"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0075","doi-asserted-by":"crossref","first-page":"61","DOI":"10.1016\/j.trc.2015.08.017","article-title":"Short-term traffic flow rate forecasting based on identifying similar traffic patterns","volume":"66","author":"Habtemichael","year":"2016","journal-title":"Transportation Research Part C Emerging Technologies"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0080","series-title":"Time series analysis","volume":"Vol. 2","author":"Hamilton","year":"1994"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0085","series-title":"2015 12th int. conf. fuzzy syst. knowl. discov. FSKD","first-page":"1670","article-title":"Short-term traffic flow forecasting: Multi-metric KNN with related station discovery","volume":"2015","author":"Hong","year":"2016"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0090","doi-asserted-by":"crossref","first-page":"2529","DOI":"10.1016\/j.sbspro.2013.08.283","article-title":"Short-term traffic flow forecasting based on two-tier K-nearest neighbor algorithm","volume":"96","author":"Hou","year":"2013","journal-title":"Procedia - Social and Behavioral Sciences"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0095","doi-asserted-by":"crossref","DOI":"10.1109\/TVT.2016.2585575","article-title":"Improving traffic flow prediction with weather information in connected cars: A deep learning approach","author":"Koesdwiady","year":"2016","journal-title":"IEEE Transactions on Vehicular Technology"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0100","series-title":"2012 15th int. IEEE conf. intell. transp. syst. 1596\u20131601","article-title":"A k-nearest neighbor locally weighted regression method for short-term traffic flow forecasting","author":"Li","year":"2012"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0105","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3390\/s17040818","article-title":"Learning traffic as images: A deep convolutional neural network for large-scale transportation network speed prediction","volume":"17","author":"Ma","year":"2017","journal-title":"Sensors (Switzerland)"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0110","doi-asserted-by":"crossref","first-page":"606","DOI":"10.1016\/j.trc.2010.10.002","article-title":"Real-time road traffic prediction with spatio-temporal correlations","volume":"19","author":"Min","year":"2011","journal-title":"Transportation Research Part C Emerging Technologies"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0115","first-page":"51","article-title":"Travel time prediction using k nearest neighbor method with combined data from vehicle detector system and automatic toll collection system","author":"Myung","year":"2014","journal-title":"Transportation Research Record Journal Transportation Research Board"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0120","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.compenvurbsys.2017.08.010","article-title":"Detecting anomalies in spatio-temporal flow data by constructing dynamic neighbourhoods","volume":"67","author":"Shi","year":"2018","journal-title":"Computers, Environment and Urban Systems"},{"issue":"1","key":"10.1016\/j.compenvurbsys.2018.05.009_bb0125","first-page":"61","article-title":"Forecasting freeway traffic flow for intelligent transportation systems application","author":"Smith","year":"1997","journal-title":"Transportation Research Part A"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0130","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1016\/S0968-090X(02)00009-8","article-title":"Comparison of parametric and nonparametric models for traffic flow forecasting","volume":"10","author":"Smith","year":"2002","journal-title":"Transportation Research Part C Emerging Technologies"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0135","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1016\/S0968-090X(03)00004-4","article-title":"A multivariate state space approach for urban traffic flow modeling and prediction","volume":"11","author":"Stathopoulos","year":"2003","journal-title":"Transportation Research Part C Emerging Technologies"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0140","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1080\/0144164042000195072","article-title":"Short-term traffic forecasting: Overview of objectives and methods","volume":"24","author":"Vlahogianni","year":"2004","journal-title":"Transport Reviews"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0145","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1111\/j.1467-8667.2007.00488.x","article-title":"Spatio-temporal short-term urban traffic volume forecasting using genetically optimized modular networks","volume":"22","author":"Vlahogianni","year":"2007","journal-title":"Computer Civ Infrastructure Engineer"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0150","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.trc.2014.01.005","article-title":"Short-term traffic forecasting: Where we are and where we're going","volume":"43","author":"Vlahogianni","year":"2014","journal-title":"Transportation Research Part C Emerging Technologies"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0155","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1061\/(ASCE)TE.1943-5436.0000672","article-title":"Improved k-nn for short-term traffic forecasting using temporal and spatial information","volume":"140","author":"Wu","year":"2014","journal-title":"Journal of Transportation Engineering"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0160","doi-asserted-by":"crossref","first-page":"246","DOI":"10.1016\/j.neucom.2015.12.013","article-title":"A distributed spatial-temporal weighted model on MapReduce for short-term traffic flow forecasting","volume":"179","author":"Xia","year":"2016","journal-title":"Neurocomputing"},{"issue":"4016018","key":"10.1016\/j.compenvurbsys.2018.05.009_bb0165","article-title":"K-nearest neighbor model for multiple-time-step prediction of short-term traffic condition","volume":"142","author":"Yu","year":"2016","journal-title":"Journal of Transportation Engineering"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0170","doi-asserted-by":"crossref","DOI":"10.3390\/s17071501","article-title":"Spatiotemporal recurrent convolutional networks for traffic prediction in transportation networks","volume":"17","author":"Yu","year":"2017","journal-title":"Sensors (Switzerland)"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0175","first-page":"762","article-title":"Spatiotemporal traffic-flow dependency and short-term traffic forecasting","volume":"35","author":"Yue","year":"2008","journal-title":"Environment and Planning B Urban Analytics and City Science"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0180","series-title":"ICTE 2013","first-page":"1214","article-title":"An improved k-NN nonparametric regression-based short-term traffic flow forecasting model for urban expressways","author":"Zhang","year":"2013"},{"key":"10.1016\/j.compenvurbsys.2018.05.009_bb0185","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1016\/j.trc.2014.02.009","article-title":"Short-term traffic volume forecasting: A k-nearest neighbor approach enhanced by constrained linearly sewing principle component algorithm","volume":"43","author":"Zheng","year":"2014","journal-title":"Transportation Research Part C Emerging Technologies"}],"container-title":["Computers, Environment and Urban Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0198971518300140?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0198971518300140?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,9,21]],"date-time":"2019-09-21T13:38:02Z","timestamp":1569073082000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0198971518300140"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,9]]},"references-count":37,"alternative-id":["S0198971518300140"],"URL":"https:\/\/doi.org\/10.1016\/j.compenvurbsys.2018.05.009","relation":{},"ISSN":["0198-9715"],"issn-type":[{"value":"0198-9715","type":"print"}],"subject":[],"published":{"date-parts":[[2018,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Short-term traffic forecasting: An adaptive ST-KNN model that considers spatial heterogeneity","name":"articletitle","label":"Article Title"},{"value":"Computers, Environment and Urban Systems","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compenvurbsys.2018.05.009","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2018 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}