{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,27]],"date-time":"2024-11-27T05:19:40Z","timestamp":1732684780126,"version":"3.28.2"},"reference-count":67,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100005047","name":"Liaoning Provincial Natural Science Foundation","doi-asserted-by":"publisher","award":["2023010411-JH3\/101"],"id":[{"id":"10.13039\/501100005047","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002367","name":"Chinese Academy of Sciences","doi-asserted-by":"publisher","award":["E229040501"],"id":[{"id":"10.13039\/501100002367","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electrical Engineering"],"published-print":{"date-parts":[[2024,12]]},"DOI":"10.1016\/j.compeleceng.2024.109781","type":"journal-article","created":{"date-parts":[[2024,10,25]],"date-time":"2024-10-25T16:34:49Z","timestamp":1729874089000},"page":"109781","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"PB","title":["MonoCAPE: Monocular 3D object detection with coordinate-aware position embeddings"],"prefix":"10.1016","volume":"120","author":[{"given":"Wenyu","family":"Chen","sequence":"first","affiliation":[]},{"given":"Mu","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Jian","family":"Fang","sequence":"additional","affiliation":[]},{"given":"Huaici","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Guogang","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"volume":"108","journal-title":"Comput Electr Eng","article-title":"TOD-Net: An end-to-end transformer-based object detection network","year":"2023","key":"10.1016\/j.compeleceng.2024.109781_b1"},{"volume":"118","journal-title":"Comput Electr Eng","article-title":"YOLOv8-QR: An improved YOLOv8 model via attention mechanism for object detection of QR code defects","year":"2024","key":"10.1016\/j.compeleceng.2024.109781_b2"},{"key":"10.1016\/j.compeleceng.2024.109781_b3","doi-asserted-by":"crossref","unstructured":"Shi S, Wang X, Li H. Pointrcnn: 3D object proposal generation and detection from point cloud. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition. CVPR, 2019, p. 770\u20139.","DOI":"10.1109\/CVPR.2019.00086"},{"key":"10.1016\/j.compeleceng.2024.109781_b4","doi-asserted-by":"crossref","unstructured":"Shi S, Guo C, Jiang L, Wang Z, Shi J, Wang X, Li H. PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition. CVPR, 2020.","DOI":"10.1109\/CVPR42600.2020.01054"},{"volume":"98","journal-title":"Comput Electr Eng","article-title":"Semantic-aware 3D-voxel CenterNet for point cloud object detection","year":"2022","key":"10.1016\/j.compeleceng.2024.109781_b5"},{"volume":"106","journal-title":"Comput Electr Eng","article-title":"Three-dimensional object detection network based on geometric information supplement strategy","year":"2023","key":"10.1016\/j.compeleceng.2024.109781_b6"},{"volume":"110","journal-title":"Comput Electr Eng","article-title":"SEGANet: 3D object detection with shape-enhancement and geometry-aware network","year":"2023","key":"10.1016\/j.compeleceng.2024.109781_b7"},{"key":"10.1016\/j.compeleceng.2024.109781_b8","doi-asserted-by":"crossref","unstructured":"Chen Y, Liu S, Shen X, Jia J. DSGN: Deep Stereo Geometry Network for 3D Object Detection. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition. CVPR, 2020, p. 12536\u201345.","DOI":"10.1109\/CVPR42600.2020.01255"},{"issue":"4","key":"10.1016\/j.compeleceng.2024.109781_b9","first-page":"4416","article-title":"DSGN++: Exploiting visual-spatial relation for stereo-based 3D detectors","volume":"45","author":"Chen","year":"2023","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"10.1016\/j.compeleceng.2024.109781_b10","series-title":"2020 IEEE\/RSJ international conference on intelligent robots and systems","first-page":"5776","article-title":"Confidence guided stereo 3d object detection with split depth estimation","author":"Li","year":"2020"},{"key":"10.1016\/j.compeleceng.2024.109781_b11","doi-asserted-by":"crossref","unstructured":"Ding M, Huo Y, Yi H, Wang Z, Shi J, Lu Z, Luo P. Learning depth-guided convolutions for monocular 3d object detection. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition. CVPR, 2020, p. 1000\u20131.","DOI":"10.1109\/CVPRW50498.2020.00508"},{"key":"10.1016\/j.compeleceng.2024.109781_b12","series-title":"Proceedings of the European conference on computer vision","first-page":"311","article-title":"Rethinking pseudo-lidar representation","author":"Ma","year":"2020"},{"key":"10.1016\/j.compeleceng.2024.109781_b13","doi-asserted-by":"crossref","unstructured":"Wang L, Du L, Ye X, Fu Y, Guo G, Xue X, Feng J, Zhang L. Depth-conditioned dynamic message propagation for monocular 3d object detection. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition. CVPR, 2021, p. 454\u201363.","DOI":"10.1109\/CVPR46437.2021.00052"},{"key":"10.1016\/j.compeleceng.2024.109781_b14","doi-asserted-by":"crossref","unstructured":"Reading C, Harakeh A, Chae J, Waslander SL. Categorical depth distribution network for monocular 3d object detection. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition. CVPR, 2021, p. 8555\u201364.","DOI":"10.1109\/CVPR46437.2021.00845"},{"year":"2022","series-title":"Petr: Position embedding transformation for multi-view 3d object detection","author":"Liu","key":"10.1016\/j.compeleceng.2024.109781_b15"},{"key":"10.1016\/j.compeleceng.2024.109781_b16","doi-asserted-by":"crossref","unstructured":"Chen Z, Chen K, Lin W, See J, Yu H, Ke Y, Yang C. PIoU Loss: Towards Accurate Oriented Object Detection in Complex Environments. In: Proceedings of the European conference on computer vision. ECCV, 2020, p. 195\u2013211.","DOI":"10.1007\/978-3-030-58558-7_12"},{"key":"10.1016\/j.compeleceng.2024.109781_b17","doi-asserted-by":"crossref","unstructured":"Sheng H, Cai S, Zhao N, Deng B, Huang J, Hua X, Zhao M, Lee GH. Rethinking Iou-based Optimization for Single-stage 3D Object Detection. In: Proceedings of the European conference on computer vision. ECCV, 2022, p. 544\u201361.","DOI":"10.1007\/978-3-031-20077-9_32"},{"key":"10.1016\/j.compeleceng.2024.109781_b18","doi-asserted-by":"crossref","unstructured":"Zheng Y, Zhang D, Xie S, Lu J, Zhou J. Rotation-Robust Intersection over Union for 3D Object Detection. In: Proceedings of the European conference on computer vision. ECCV, 2020, p. 464\u201380.","DOI":"10.1007\/978-3-030-58565-5_28"},{"key":"10.1016\/j.compeleceng.2024.109781_b19","doi-asserted-by":"crossref","unstructured":"Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S. End-to-End Object Detection with Transformers. In: Proceedings of the European conference on computer vision. ECCV, 2020, p. 213\u201329.","DOI":"10.1007\/978-3-030-58452-8_13"},{"year":"2019","series-title":"Objects as points","author":"Zhou","key":"10.1016\/j.compeleceng.2024.109781_b20"},{"key":"10.1016\/j.compeleceng.2024.109781_b21","doi-asserted-by":"crossref","unstructured":"Li P, Zhao H, Liu P, Cao F. RTM3D: Real-Time Monocular 3D Detection from Object Keypoints for Autonomous Driving. In: Proceedings of the European conference on computer vision. ECCV, 2020, p. 644\u201360.","DOI":"10.1007\/978-3-030-58580-8_38"},{"issue":"3","key":"10.1016\/j.compeleceng.2024.109781_b22","doi-asserted-by":"crossref","first-page":"5565","DOI":"10.1109\/LRA.2021.3061343","article-title":"Monocular 3D detection with geometric constraint embedding and semi-supervised training","volume":"6","author":"Li","year":"2021","journal-title":"IEEE Robot Autom Lett"},{"key":"10.1016\/j.compeleceng.2024.109781_b23","doi-asserted-by":"crossref","unstructured":"Chen H, Huang Y, Tian W, Gao Z, Xiong L. MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition. CVPR, 2021, p. 10379\u201388.","DOI":"10.1109\/CVPR46437.2021.01024"},{"key":"10.1016\/j.compeleceng.2024.109781_b24","doi-asserted-by":"crossref","unstructured":"Liu Z, Zhou D, Lu F, Fang J, Zhang L. AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection. In: Proceedings of the IEEE\/CVF international conference on computer vision. ICCV, 2021, p. 15641\u201350.","DOI":"10.1109\/ICCV48922.2021.01535"},{"key":"10.1016\/j.compeleceng.2024.109781_b25","doi-asserted-by":"crossref","unstructured":"Lian Q, Li P, Chen X. MonoJSG: Joint Semantic and Geometric Cost Volume for Monocular 3D Object Detection. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition. CVPR, 2022, p. 1070\u20139.","DOI":"10.1109\/CVPR52688.2022.00114"},{"journal-title":"IEEE Trans Intell Transp Syst","article-title":"Occlusion-aware plane-constraints for monocular 3D object detection","year":"2023","author":"Yao","key":"10.1016\/j.compeleceng.2024.109781_b26"},{"key":"10.1016\/j.compeleceng.2024.109781_b27","doi-asserted-by":"crossref","unstructured":"Zhang R, Qiu H, Wang T, Xu X, Guo Z, Qiao Y, Gao P, Li H. MonoDETR: Depth-guided Transformer for Monocular 3D Object Detection. In: Proceedings of the IEEE\/CVF international conference on computer vision. ICCV, 2023.","DOI":"10.1109\/ICCV51070.2023.00840"},{"key":"10.1016\/j.compeleceng.2024.109781_b28","doi-asserted-by":"crossref","unstructured":"Huang K-C, Wu T-H, Su H-T, Hsu WH. MonoDTR: Monocular 3D Object Detection With Depth-Aware Transformer. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition. CVPR, 2022, p. 4012\u201321.","DOI":"10.1109\/CVPR52688.2022.00398"},{"year":"2023","series-title":"MonoPGC: Monocular 3D object detection with pixel geometry contexts","author":"Wu","key":"10.1016\/j.compeleceng.2024.109781_b29"},{"key":"10.1016\/j.compeleceng.2024.109781_b30","doi-asserted-by":"crossref","unstructured":"Weng X, Kitani K. Monocular 3d object detection with pseudo-lidar point cloud. In: Proceedings of the IEEE\/CVF international conference on computer vision (ICCV) workshops. 2019.","DOI":"10.1109\/ICCVW.2019.00114"},{"key":"10.1016\/j.compeleceng.2024.109781_b31","doi-asserted-by":"crossref","unstructured":"Wang X, Yin W, Kong T, Jiang Y, Li L, Shen C. Task-aware monocular depth estimation for 3d object detection. In: Proceedings of the AAAI conference on artificial intelligence. Vol. 34, 2020, p. 12257\u201364.","DOI":"10.1609\/aaai.v34i07.6908"},{"key":"10.1016\/j.compeleceng.2024.109781_b32","series-title":"Computer vision\u2013ECCV 2020: 16th European conference, glasgow, UK, August 23\u201328, 2020, proceedings, part IX 16","first-page":"17","article-title":"Monocular 3d object detection via feature domain adaptation","author":"Ye","year":"2020"},{"key":"10.1016\/j.compeleceng.2024.109781_b33","series-title":"Computer vision\u2013ECCV 2020: 16th European conference, glasgow, UK, August 23\u201328, 2020, proceedings, part XIII 16","first-page":"311","article-title":"Rethinking pseudo-lidar representation","author":"Ma","year":"2020"},{"key":"10.1016\/j.compeleceng.2024.109781_b34","doi-asserted-by":"crossref","unstructured":"Wang L, Du L, Ye X, Fu Y, Guo G, Xue X, Feng J, Zhang L. Depth-conditioned dynamic message propagation for monocular 3d object detection. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition. CVPR, 2021, p. 454\u201363.","DOI":"10.1109\/CVPR46437.2021.00052"},{"key":"10.1016\/j.compeleceng.2024.109781_b35","doi-asserted-by":"crossref","unstructured":"Liu Y, Yan J, Jia F, Li S, Gao A, Wang T, Zhang X. PETRv2: A Unified Framework for 3D Perception from Multi-Camera Images. In: 2023 IEEE\/CVF international conference on computer vision. ICCV, 2023, p. 3239\u201349.","DOI":"10.1109\/ICCV51070.2023.00302"},{"key":"10.1016\/j.compeleceng.2024.109781_b36","doi-asserted-by":"crossref","unstructured":"Rezatofighi H, Tsoi N, Gwak J, Sadeghian A, Reid I, Savarese S. Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition. CVPR, 2019, p. 658\u201366.","DOI":"10.1109\/CVPR.2019.00075"},{"key":"10.1016\/j.compeleceng.2024.109781_b37","doi-asserted-by":"crossref","unstructured":"Zheng Z, Wang P, Liu W, Li J, Ye R, Ren D. Distance-IoU loss: Faster and better learning for bounding box regression. In: Proceedings of the AAAI conference on artificial intelligence. Vol. 34, 2020, p. 12993\u20133000.","DOI":"10.1609\/aaai.v34i07.6999"},{"key":"10.1016\/j.compeleceng.2024.109781_b38","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1016\/j.neucom.2022.07.042","article-title":"Focal and efficient IOU loss for accurate bounding box regression","volume":"506","author":"Zhang","year":"2022","journal-title":"Neurocomputing"},{"issue":"8","key":"10.1016\/j.compeleceng.2024.109781_b39","doi-asserted-by":"crossref","first-page":"8831","DOI":"10.1109\/TITS.2022.3219474","article-title":"CAMRL: A joint method of channel attention and multidimensional regression loss for 3D object detection in automated vehicles","volume":"24","author":"Gao","year":"2023","journal-title":"IEEE Trans Intell Transp Syst"},{"volume":"103","journal-title":"Comput Electr Eng","article-title":"Cascaded multi-3D-view fusion for 3D-oriented object detection","year":"2022","key":"10.1016\/j.compeleceng.2024.109781_b40"},{"issue":"4","key":"10.1016\/j.compeleceng.2024.109781_b41","first-page":"4335","article-title":"Detecting rotated objects as Gaussian distributions and its 3-D generalization","volume":"45","author":"Yang","year":"2023","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"year":"2023","series-title":"The KFIoU loss for rotated object detection","author":"Yang","key":"10.1016\/j.compeleceng.2024.109781_b42"},{"volume":"155","journal-title":"Pattern Recognit","article-title":"Linear Gaussian bounding box representation and ring-shaped rotated convolution for oriented object detection","year":"2024","key":"10.1016\/j.compeleceng.2024.109781_b43"},{"key":"10.1016\/j.compeleceng.2024.109781_b44","doi-asserted-by":"crossref","unstructured":"He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition. CVPR, 2016, p. 770\u20138.","DOI":"10.1109\/CVPR.2016.90"},{"key":"10.1016\/j.compeleceng.2024.109781_b45","series-title":"DAGM german conference on pattern recognition","first-page":"289","article-title":"Center3d: Center-based monocular 3d object detection with joint depth understanding","author":"Tang","year":"2020"},{"year":"2021","series-title":"Deformable DETR: Deformable transformers for end-to-end object detection","author":"Zhu","key":"10.1016\/j.compeleceng.2024.109781_b46"},{"key":"10.1016\/j.compeleceng.2024.109781_b47","article-title":"What uncertainties do we need in bayesian deep learning for computer vision?","volume":"30","author":"Kendall","year":"2017","journal-title":"Adv Neural Inf Process Syst"},{"key":"10.1016\/j.compeleceng.2024.109781_b48","doi-asserted-by":"crossref","unstructured":"Ma X, Zhang Y, Xu D, Zhou D, Yi S, Li H, Ouyang W. Delving into localization errors for monocular 3d object detection. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition. CVPR, 2021, p. 4721\u201330.","DOI":"10.1109\/CVPR46437.2021.00469"},{"key":"10.1016\/j.compeleceng.2024.109781_b49","doi-asserted-by":"crossref","unstructured":"Mousavian A, Anguelov D, Flynn J, Kosecka J. 3d bounding box estimation using deep learning and geometry. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition. CVPR, 2017, p. 7074\u201382.","DOI":"10.1109\/CVPR.2017.597"},{"key":"10.1016\/j.compeleceng.2024.109781_b50","doi-asserted-by":"crossref","unstructured":"Chen Y, Tai L, Sun K, Li M. MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition. CVPR, 2020, p. 12093\u2013102.","DOI":"10.1109\/CVPR42600.2020.01211"},{"key":"10.1016\/j.compeleceng.2024.109781_b51","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1016\/j.neucom.2022.07.042","article-title":"Focal and efficient IOU loss for accurate bounding box regression","volume":"506","author":"Zhang","year":"2022","journal-title":"Neurocomputing"},{"key":"10.1016\/j.compeleceng.2024.109781_b52","doi-asserted-by":"crossref","unstructured":"Geiger A, Lenz P, Urtasun R. Are we ready for autonomous driving? The KITTI vision benchmark suite. In: 2012 IEEE conference on computer vision and pattern recognition. 2012, p. 3354\u201361. http:\/\/dx.doi.org\/10.1109\/CVPR.2012.6248074.","DOI":"10.1109\/CVPR.2012.6248074"},{"key":"10.1016\/j.compeleceng.2024.109781_b53","doi-asserted-by":"crossref","unstructured":"Chen X, Kundu K, Zhang Z, Ma H, Fidler S, Urtasun R. Monocular 3d object detection for autonomous driving. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition. CVPR, 2016, p. 2147\u201356.","DOI":"10.1109\/CVPR.2016.236"},{"issue":"2","key":"10.1016\/j.compeleceng.2024.109781_b54","first-page":"1801","article-title":"Boosting monocular 3D object detection with object-centric auxiliary depth supervision","volume":"24","author":"Kim","year":"2023","journal-title":"IEEE Trans Intell Transp Syst"},{"key":"10.1016\/j.compeleceng.2024.109781_b55","doi-asserted-by":"crossref","first-page":"4050","DOI":"10.1109\/TIP.2022.3180210","article-title":"Fine-grained multilevel fusion for anti-occlusion monocular 3D object detection","volume":"31","author":"Liu","year":"2022","journal-title":"IEEE Trans Image Process"},{"key":"10.1016\/j.compeleceng.2024.109781_b56","doi-asserted-by":"crossref","unstructured":"Shi X, Ye Q, Chen X, Chen C, Chen Z, Kim T-K. Geometry-based distance decomposition for monocular 3d object detection. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition. CVPR, 2021, p. 15172\u201381.","DOI":"10.1109\/ICCV48922.2021.01489"},{"key":"10.1016\/j.compeleceng.2024.109781_b57","doi-asserted-by":"crossref","unstructured":"Luo S, Dai H, Shao L, Ding Y. M3DSSD: Monocular 3D Single Stage Object Detector. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition. CVPR, 2021, p. 6145\u201354.","DOI":"10.1109\/CVPR46437.2021.00608"},{"key":"10.1016\/j.compeleceng.2024.109781_b58","doi-asserted-by":"crossref","unstructured":"Zhang Y, Lu J, Zhou J. Objects are different: Flexible monocular 3d object detection. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition. CVPR, 2021, p. 3289\u201398.","DOI":"10.1109\/CVPR46437.2021.00330"},{"key":"10.1016\/j.compeleceng.2024.109781_b59","series-title":"Conference on robot learning","first-page":"1475","article-title":"Probabilistic and geometric depth: Detecting objects in perspective","author":"Wang","year":"2022"},{"volume":"562","journal-title":"Neurocomputing","article-title":"GPro3D: Deriving 3D bbox from ground plane in monocular 3D object detection","year":"2023","key":"10.1016\/j.compeleceng.2024.109781_b60"},{"issue":"11","key":"10.1016\/j.compeleceng.2024.109781_b61","doi-asserted-by":"crossref","first-page":"11232","DOI":"10.1109\/JSEN.2022.3189174","article-title":"M3DGAF: Monocular 3D object detection with geometric appearance awareness and feature fusion","volume":"23","author":"Chen","year":"2023","journal-title":"IEEE Sens J"},{"issue":"5","key":"10.1016\/j.compeleceng.2024.109781_b62","doi-asserted-by":"crossref","first-page":"4593","DOI":"10.1109\/TITS.2023.3323036","article-title":"Occlusion-aware plane-constraints for monocular 3D object detection","volume":"25","author":"Yao","year":"2024","journal-title":"IEEE Trans Intell Transp Syst"},{"key":"10.1016\/j.compeleceng.2024.109781_b63","doi-asserted-by":"crossref","unstructured":"Brazil G, Liu X. M3d-rpn: Monocular 3d region proposal network for object detection. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition. CVPR, 2019, p. 9287\u201396.","DOI":"10.1109\/ICCV.2019.00938"},{"key":"10.1016\/j.compeleceng.2024.109781_b64","series-title":"Proceedings of the European conference on computer vision","first-page":"135","article-title":"Kinematic 3d object detection in monocular video","author":"Brazil","year":"2020"},{"key":"10.1016\/j.compeleceng.2024.109781_b65","doi-asserted-by":"crossref","unstructured":"Kumar A, Brazil G, Liu X. Groomed-nms: Grouped mathematically differentiable nms for monocular 3d object detection. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition. CVPR, 2021, p. 8973\u201383.","DOI":"10.1109\/CVPR46437.2021.00886"},{"key":"10.1016\/j.compeleceng.2024.109781_b66","doi-asserted-by":"crossref","unstructured":"Lu Y, Ma X, Yang L, Zhang T, Liu Y, Chu Q, Yan J, Ouyang W. Geometry uncertainty projection network for monocular 3d object detection. In: Proceedings of the IEEE\/CVF conference on computer vision and pattern recognition. CVPR, 2021, p. 3111\u201321.","DOI":"10.1109\/ICCV48922.2021.00310"},{"key":"10.1016\/j.compeleceng.2024.109781_b67","series-title":"Advances in neural information processing systems","article-title":"Attention is all you need","volume":"Vol. 30","author":"Vaswani","year":"2017"}],"container-title":["Computers and Electrical Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0045790624007080?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0045790624007080?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,26]],"date-time":"2024-11-26T08:34:24Z","timestamp":1732610064000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0045790624007080"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,12]]},"references-count":67,"alternative-id":["S0045790624007080"],"URL":"https:\/\/doi.org\/10.1016\/j.compeleceng.2024.109781","relation":{},"ISSN":["0045-7906"],"issn-type":[{"type":"print","value":"0045-7906"}],"subject":[],"published":{"date-parts":[[2024,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"MonoCAPE: Monocular 3D object detection with coordinate-aware position embeddings","name":"articletitle","label":"Article Title"},{"value":"Computers and Electrical Engineering","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compeleceng.2024.109781","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"109781"}}