{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:40:22Z","timestamp":1740120022554,"version":"3.37.3"},"reference-count":25,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100010014","name":"Six Talent Peaks Project in Jiangsu Province","doi-asserted-by":"publisher","award":["XYDXX-007"],"id":[{"id":"10.13039\/501100010014","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electrical Engineering"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1016\/j.compeleceng.2023.108734","type":"journal-article","created":{"date-parts":[[2023,4,23]],"date-time":"2023-04-23T09:05:41Z","timestamp":1682240741000},"page":"108734","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":15,"special_numbering":"C","title":["High-resolution remote sensing images semantic segmentation using improved UNet and SegNet"],"prefix":"10.1016","volume":"108","author":[{"given":"Xin","family":"Wang","sequence":"first","affiliation":[]},{"given":"Shihan","family":"Jing","sequence":"additional","affiliation":[]},{"given":"Huifeng","family":"Dai","sequence":"additional","affiliation":[]},{"given":"Aiye","family":"Shi","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compeleceng.2023.108734_bib0001","doi-asserted-by":"crossref","DOI":"10.1016\/j.compeleceng.2022.108337","article-title":"Global and local geometric constrained feature matching for high resolution remote sensing images","volume":"103","author":"Zhu","year":"2022","journal-title":"Comput Electr Eng"},{"issue":"9","key":"10.1016\/j.compeleceng.2023.108734_bib0002","doi-asserted-by":"crossref","first-page":"7918","DOI":"10.1109\/TGRS.2020.3044655","article-title":"Enhanced feature pyramid network with deep semantic embedding for remote sensing scene classification","volume":"59","author":"Wang","year":"2021","journal-title":"IEEE Trans Geosci Remote Sens"},{"key":"10.1016\/j.compeleceng.2023.108734_bib0003","doi-asserted-by":"crossref","first-page":"2030","DOI":"10.1109\/JSTARS.2021.3051569","article-title":"Attention consistent network for remote sensing scene classification","volume":"14","author":"Tang","year":"2021","journal-title":"IEEE J Sel Topics Appl Earth Observ Remote Sens"},{"key":"10.1016\/j.compeleceng.2023.108734_bib0004","doi-asserted-by":"crossref","DOI":"10.1016\/j.compeleceng.2022.107979","article-title":"Detection of remote sensing targets with angles via modified CenterNet","volume":"100","author":"Wang","year":"2022","journal-title":"Comput Electr Engineering"},{"key":"10.1016\/j.compeleceng.2023.108734_bib0005","first-page":"886","article-title":"Histograms of oriented gradients for human detection","volume":"1","author":"Dalal","year":"2005","journal-title":"Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)"},{"key":"10.1016\/j.compeleceng.2023.108734_bib0006","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1016\/j.isprsjprs.2013.08.001","article-title":"Object detection in remote sensing imagery using a discriminatively trained mixture model","volume":"85","author":"Cheng","year":"2013","journal-title":"ISPRS J Photogramm Remote Sens"},{"issue":"2","key":"10.1016\/j.compeleceng.2023.108734_bib0007","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1023\/B:VISI.0000029664.99615.94","article-title":"Distinctive image features from scale-invariant keypoints","volume":"60","author":"Lowe","year":"2004","journal-title":"Int J Comput Vis"},{"issue":"4","key":"10.1016\/j.compeleceng.2023.108734_bib0008","doi-asserted-by":"crossref","first-page":"1156","DOI":"10.1109\/TGRS.2008.2008440","article-title":"Urban-area and building detection using SIFT keypoints and graph theory","volume":"47","author":"Sirmacek","year":"2009","journal-title":"IEEE Trans Geosci Remote Sens"},{"key":"10.1016\/j.compeleceng.2023.108734_bib0009","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1016\/j.ins.2016.02.021","article-title":"Scene classification using local and global features with collaborative representation fusion","volume":"348","author":"Zou","year":"2016","journal-title":"Inf Sci"},{"issue":"2","key":"10.1016\/j.compeleceng.2023.108734_bib0010","doi-asserted-by":"crossref","first-page":"230","DOI":"10.1109\/TCI.2017.2666551","article-title":"Large-scale feature selection with Gaussian mixture models for the classification of high dimensional remote sensing images","volume":"3","author":"Lagrange","year":"2017","journal-title":"IEEE Trans Comput Imag"},{"key":"10.1016\/j.compeleceng.2023.108734_bib0011","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1016\/j.isprsjprs.2016.03.004","article-title":"A spectral\u2013structural bag-of-features scene classifier for very high spatial resolution remote sensing imagery","volume":"116","author":"Zhao","year":"2016","journal-title":"ISPRS J Photogram Remote Sens"},{"key":"10.1016\/j.compeleceng.2023.108734_bib0012","series-title":"Proc. adv. NIPS","first-page":"1106","article-title":"ImageNet classification with deep convolutional neural networks","author":"Krizhevsky","year":"2012"},{"key":"10.1016\/j.compeleceng.2023.108734_bib0013","series-title":"Proc. IEEE conf. comput. vis. pattern recognit (CVPR)","first-page":"3431","article-title":"Fully convolutional networks for semantic segmentation","author":"Long","year":"2015"},{"key":"10.1016\/j.compeleceng.2023.108734_bib0014","unstructured":"Sherrah J. Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery. 2016, arXiv:1606.02585."},{"issue":"11","key":"10.1016\/j.compeleceng.2023.108734_bib0015","doi-asserted-by":"crossref","first-page":"6054","DOI":"10.1109\/TGRS.2017.2719738","article-title":"Learning aerial image segmentation from online maps","volume":"55","author":"Kaiser","year":"2017","journal-title":"IEEE Trans Geosci Remote Sens"},{"key":"10.1016\/j.compeleceng.2023.108734_bib0016","series-title":"Proc. int. conf. med. image comput. comput.-assist. intervent.","first-page":"234","article-title":"U-net: convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"issue":"12","key":"10.1016\/j.compeleceng.2023.108734_bib0017","doi-asserted-by":"crossref","first-page":"2481","DOI":"10.1109\/TPAMI.2016.2644615","article-title":"SegNet: a deep convolutional encoder-decoder architecture for robust semantic pixel-wise labelling","volume":"39","author":"Badrinarayanan","year":"2017","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"4","key":"10.1016\/j.compeleceng.2023.108734_bib0018","doi-asserted-by":"crossref","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","article-title":"DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs","volume":"40","author":"Chen","year":"2018","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"issue":"5","key":"10.1016\/j.compeleceng.2023.108734_bib0019","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TEVC.2019.2890858","article-title":"One pixel attack for fooling deep neural networks","volume":"23","author":"Su","year":"2019","journal-title":"IEEE Trans Evolut Comput"},{"key":"10.1016\/j.compeleceng.2023.108734_bib0020","unstructured":"Luo W., Wu C., Zhou N., Ni L. Random Directional Attack for Fooling Deep Neural Networks. 2019, arXiv:1908.02658."},{"key":"10.1016\/j.compeleceng.2023.108734_bib0021","doi-asserted-by":"crossref","first-page":"422","DOI":"10.1109\/JSTARS.2021.3135566","article-title":"Relation-attention networks for remote sensing scene classification","volume":"15","author":"Wang","year":"2022","journal-title":"IEEE J Sel Topics Appl Earth Observ Remote Sens"},{"key":"10.1016\/j.compeleceng.2023.108734_bib0022","doi-asserted-by":"crossref","first-page":"394","DOI":"10.1007\/s10851-018-0849-2","article-title":"Soft color morphology: a fuzzy approach for multivariate images","volume":"61","author":"Bibiloni","year":"2018","journal-title":"J Math Imag Vis"},{"key":"10.1016\/j.compeleceng.2023.108734_bib0023","doi-asserted-by":"crossref","DOI":"10.1109\/LGRS.2022.3205417","article-title":"Dropout-based adversarial training networks for remote sensing scene classification","volume":"19","author":"Wang","year":"2022","journal-title":"IEEE Geosci Remote S"},{"key":"10.1016\/j.compeleceng.2023.108734_bib0024","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/j.isprsjprs.2021.01.023","article-title":"A geographic information-driven method and a new large scale dataset for remote sensing cloud\/snow detection","volume":"174","author":"Wu","year":"2021","journal-title":"ISPRS J Photogramm Remote Sens"},{"key":"10.1016\/j.compeleceng.2023.108734_bib0025","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2021.108290","article-title":"Contextual ensemble network for semantic segmentation","volume":"122","author":"Zhou","year":"2022","journal-title":"Pattern Recogn"}],"container-title":["Computers and Electrical Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0045790623001581?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0045790623001581?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,11,23]],"date-time":"2023-11-23T16:32:50Z","timestamp":1700757170000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0045790623001581"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5]]},"references-count":25,"alternative-id":["S0045790623001581"],"URL":"https:\/\/doi.org\/10.1016\/j.compeleceng.2023.108734","relation":{},"ISSN":["0045-7906"],"issn-type":[{"type":"print","value":"0045-7906"}],"subject":[],"published":{"date-parts":[[2023,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"High-resolution remote sensing images semantic segmentation using improved UNet and SegNet","name":"articletitle","label":"Article Title"},{"value":"Computers and Electrical Engineering","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compeleceng.2023.108734","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"108734"}}