{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T05:56:27Z","timestamp":1726206987628},"reference-count":25,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electrical Engineering"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1016\/j.compeleceng.2023.108663","type":"journal-article","created":{"date-parts":[[2023,3,17]],"date-time":"2023-03-17T16:45:41Z","timestamp":1679071541000},"page":"108663","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":9,"special_numbering":"C","title":["A classifier based on multiple feature extraction blocks for gait authentication using smartphone sensors"],"prefix":"10.1016","volume":"108","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3888-2427","authenticated-orcid":false,"given":"Shu","family":"Shen","sequence":"first","affiliation":[]},{"given":"Shao-Shan","family":"Sun","sequence":"additional","affiliation":[]},{"given":"Wen-Juan","family":"Li","sequence":"additional","affiliation":[]},{"given":"Ru-Chuan","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Peng","family":"Sun","sequence":"additional","affiliation":[]},{"given":"Sen","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Xin-Yu","family":"Geng","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"5","key":"10.1016\/j.compeleceng.2023.108663_b1","doi-asserted-by":"crossref","first-page":"1025","DOI":"10.1109\/TPAMI.2019.2961900","article-title":"Adversarial cross-spectral face completion for NIR-VIS face recognition","volume":"42","author":"He","year":"2019","journal-title":"IEEE Trans Pattern Anal Mach Intell"},{"key":"10.1016\/j.compeleceng.2023.108663_b2","series-title":"2019 innovations in power and advanced computing technologies","first-page":"1","article-title":"Iris recognition using local and global iris image moment features","volume":"vol. 1","author":"Patil","year":"2019"},{"key":"10.1016\/j.compeleceng.2023.108663_b3","series-title":"TENCON 2018-2018 IEEE region 10 conference","first-page":"1723","article-title":"Deep trajectory based gait recognition for human re-identification","author":"Sattrupai","year":"2018"},{"key":"10.1016\/j.compeleceng.2023.108663_b4","series-title":"2018 digital image computing: techniques and applications","first-page":"1","article-title":"Robust CNN-based gait verification and identification using skeleton gait energy image","author":"Yao","year":"2018"},{"issue":"4","key":"10.1016\/j.compeleceng.2023.108663_b5","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3340293","article-title":"A survey on gait recognition via wearable sensors","volume":"52","author":"Marsico","year":"2019","journal-title":"ACM Comput Surv"},{"key":"10.1016\/j.compeleceng.2023.108663_b6","series-title":"2016 international conference of the biometrics special interest group","first-page":"1","article-title":"Embedded accelerometer signal normalization for cross-device gait recognition","author":"De\u00a0Marsico","year":"2016"},{"key":"10.1016\/j.compeleceng.2023.108663_b7","series-title":"2017 4th international conference on information science and control engineering","first-page":"414","article-title":"iwalk: Let your smartphone remember you","author":"Li","year":"2017"},{"key":"10.1016\/j.compeleceng.2023.108663_b8","series-title":"2020 fifth international conference on informatics and computing","first-page":"1","article-title":"Optimization of K-Nn classification in human gait recognition","author":"Pratama","year":"2020"},{"issue":"3","key":"10.1016\/j.compeleceng.2023.108663_b9","doi-asserted-by":"crossref","first-page":"210","DOI":"10.3390\/app7030210","article-title":"DeepGait: A learning deep convolutional representation for view-invariant gait recognition using joint Bayesian","volume":"7","author":"Li","year":"2017","journal-title":"Appl Sci"},{"key":"10.1016\/j.compeleceng.2023.108663_b10","doi-asserted-by":"crossref","first-page":"23826","DOI":"10.1109\/ACCESS.2021.3056880","article-title":"Multi-model long short-term memory network for gait recognition using window-based data segment","volume":"9","author":"Tran","year":"2021","journal-title":"IEEE Access"},{"issue":"10","key":"10.1016\/j.compeleceng.2023.108663_b11","doi-asserted-by":"crossref","first-page":"4041","DOI":"10.1007\/s12652-019-01659-7","article-title":"Gait identification using a new time-warped similarity metric based on smartphone inertial signals","volume":"11","author":"Deb","year":"2020","journal-title":"J Ambient Intell Humaniz Comput"},{"key":"10.1016\/j.compeleceng.2023.108663_b12","series-title":"IECON 2018-44th annual conference of the IEEE industrial electronics society","first-page":"4656","article-title":"Continuous user authentication in smartphones using gait analysis","author":"Mufandaidza","year":"2018"},{"key":"10.1016\/j.compeleceng.2023.108663_b13","doi-asserted-by":"crossref","unstructured":"Muaaz M, Mayrhofer R. Accelerometer based gait recognition using adapted gaussian mixture models. In Proceedings of the 14th international conference on advances in mobile computing and multi media, 2016, p. 288\u201391.","DOI":"10.1145\/3007120.3007164"},{"key":"10.1016\/j.compeleceng.2023.108663_b14","series-title":"Asian simulation conference","first-page":"119","article-title":"Gait classification and identity authentication using CNN","author":"Yuan","year":"2018"},{"key":"10.1016\/j.compeleceng.2023.108663_b15","first-page":"1531","article-title":"Large scale multiple kernel learning","volume":"7","author":"Sonnenburg","year":"2006","journal-title":"J Mach Learn Res"},{"key":"10.1016\/j.compeleceng.2023.108663_b16","doi-asserted-by":"crossref","first-page":"23826","DOI":"10.1109\/ACCESS.2021.3056880","article-title":"Multi-model long short-term memory network for gait recognition using window-based data segment","volume":"9","author":"Tran","year":"2021","journal-title":"IEEE Access"},{"key":"10.1016\/j.compeleceng.2023.108663_b17","doi-asserted-by":"crossref","first-page":"3197","DOI":"10.1109\/TIFS.2020.2985628","article-title":"Deep learning-based gait recognition using smartphones in the wild","volume":"15","author":"Zou","year":"2020","journal-title":"IEEE Trans Inf Forensics Secur"},{"issue":"8","key":"10.1016\/j.compeleceng.2023.108663_b18","doi-asserted-by":"crossref","first-page":"2866","DOI":"10.3390\/s21082866","article-title":"A lightweight attention-based CNN model for efficient gait recognition with wearable IMU sensors","volume":"21","author":"Huang","year":"2021","journal-title":"Sensors"},{"issue":"1","key":"10.1016\/j.compeleceng.2023.108663_b19","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1016\/j.patcog.2013.06.028","article-title":"The largest inertial sensor-based gait database and performance evaluation of gait-based personal authentication","volume":"47","author":"Ngo","year":"2014","journal-title":"Pattern Recognit"},{"issue":"9","key":"10.1016\/j.compeleceng.2023.108663_b20","doi-asserted-by":"crossref","first-page":"1864","DOI":"10.1109\/TCYB.2014.2361287","article-title":"Accelerometer-based gait recognition by sparse representation of signature points with clusters","volume":"45","author":"Zhang","year":"2014","journal-title":"IEEE Trans Cybern"},{"key":"10.1016\/j.compeleceng.2023.108663_b21","series-title":"2015 4th mediterranean conference on embedded computing","first-page":"368","article-title":"On gait recognition with smartphone accelerometer","author":"Ferrero","year":"2015"},{"issue":"4","key":"10.1016\/j.compeleceng.2023.108663_b22","doi-asserted-by":"crossref","first-page":"624","DOI":"10.1109\/TCT.1965.1082501","article-title":"Transient response of butterworth filters","volume":"12","author":"Vollenhoven","year":"1965","journal-title":"IEEE Trans Circuit Theory"},{"issue":"1","key":"10.1016\/j.compeleceng.2023.108663_b23","doi-asserted-by":"crossref","first-page":"820","DOI":"10.1109\/JIOT.2018.2860592","article-title":"Accelerometer-based speed-adaptive gait authentication method for wearable IoT devices","volume":"6","author":"Sun","year":"2018","journal-title":"IEEE Internet Things J"},{"key":"10.1016\/j.compeleceng.2023.108663_b24","series-title":"Adam: A method for stochastic optimization","author":"Kingma","year":"2014"},{"key":"10.1016\/j.compeleceng.2023.108663_b25","first-page":"852","article-title":"Developing a web based system for breast cancer prediction using xgboost classifier","volume":"9","author":"Sinha","year":"2020","journal-title":"Int J Eng Res"}],"container-title":["Computers and Electrical Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0045790623000836?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0045790623000836?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,11,23]],"date-time":"2023-11-23T11:29:01Z","timestamp":1700738941000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0045790623000836"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5]]},"references-count":25,"alternative-id":["S0045790623000836"],"URL":"https:\/\/doi.org\/10.1016\/j.compeleceng.2023.108663","relation":{},"ISSN":["0045-7906"],"issn-type":[{"value":"0045-7906","type":"print"}],"subject":[],"published":{"date-parts":[[2023,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A classifier based on multiple feature extraction blocks for gait authentication using smartphone sensors","name":"articletitle","label":"Article Title"},{"value":"Computers and Electrical Engineering","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compeleceng.2023.108663","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"108663"}}