{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T06:40:00Z","timestamp":1740120000266,"version":"3.37.3"},"reference-count":25,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,7,1]],"date-time":"2022-07-01T00:00:00Z","timestamp":1656633600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61732018","61802367","61872335"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002367","name":"Chinese Academy of Sciences","doi-asserted-by":"publisher","award":["171111KYSB20200002","XDC05000000"],"id":[{"id":"10.13039\/501100002367","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers and Electrical Engineering"],"published-print":{"date-parts":[[2022,7]]},"DOI":"10.1016\/j.compeleceng.2022.107989","type":"journal-article","created":{"date-parts":[[2022,4,19]],"date-time":"2022-04-19T10:19:45Z","timestamp":1650363585000},"page":"107989","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["A synergistic reinforcement learning-based framework design in driving automation"],"prefix":"10.1016","volume":"101","author":[{"given":"Yuqiong","family":"Qi","sequence":"first","affiliation":[]},{"given":"Yang","family":"Hu","sequence":"additional","affiliation":[]},{"given":"Haibin","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Shen","family":"Li","sequence":"additional","affiliation":[]},{"given":"Xiaochun","family":"Ye","sequence":"additional","affiliation":[]},{"given":"Dongrui","family":"Fan","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.compeleceng.2022.107989_bib0001","doi-asserted-by":"crossref","first-page":"1403","DOI":"10.1109\/TITS.2013.2262331","article-title":"Extensive tests of autonomous driving technologies","volume":"14","author":"Broggi","year":"2013","journal-title":"IEEE Trans Intell Transp Syst"},{"year":"2014","series-title":"Levels of driving automation are defined in new sae international standard j3016: 2014","author":"Driving","key":"10.1016\/j.compeleceng.2022.107989_bib0002"},{"key":"10.1016\/j.compeleceng.2022.107989_bib0003","series-title":"2012 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"3354","article-title":"Are we ready for autonomous driving? The kitti vision benchmark suite","author":"Geiger","year":"2012"},{"key":"10.1016\/j.compeleceng.2022.107989_bib0004","series-title":"2020 53rd Annual IEEE\/ACM International Symposium on Microarchitecture (MICRO)","article-title":"Building the computing system for autonomous micromobility vehicles: design constraints and architectural optimizations","author":"Yu","year":"2020"},{"key":"10.1016\/j.compeleceng.2022.107989_bib0005","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"2722","article-title":"Deepdriving: learning affordance for direct perception in autonomous driving","author":"Chen","year":"2015"},{"issue":"2","key":"10.1016\/j.compeleceng.2022.107989_bib0006","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1002\/cpe.1631","article-title":"Starpu:a unified platform for task scheduling on heterogeneous multicore architectures","volume":"23","author":"Augonnet","year":"2011","journal-title":"Concurr Comput: Practic Exp"},{"key":"10.1016\/j.compeleceng.2022.107989_bib0007","unstructured":"C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and."},{"key":"10.1016\/j.compeleceng.2022.107989_bib0008","unstructured":"C.-Y. Fu, W. Liu, A. Ranga, A. Tyagi, and A.C. Berg,Dssd: Deconvolutional single shot detector, arXiv preprint arXiv:1701.06659, 2017."},{"key":"10.1016\/j.compeleceng.2022.107989_bib0009","series-title":"Computer Vision\u2013ECCV 2016 - 14th European Conference","article-title":"Learning to track at 100 FPS with deep regression networks","author":"Held","year":"2016"},{"issue":"1","key":"10.1016\/j.compeleceng.2022.107989_bib0010","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1214\/ss\/1177011077","article-title":"Simulated annealing","volume":"8","author":"Bertsimas","year":"1993","journal-title":"Stat Sci"},{"key":"10.1016\/j.compeleceng.2022.107989_bib0011","series-title":"International Conference on Information and Communication Technology Convergence, ICTC 2018","first-page":"31","article-title":"Energy-efficient task partitioning for CNN-based object detection in heterogeneous computing environment","author":"Oh","year":"2018"},{"issue":"2","key":"10.1016\/j.compeleceng.2022.107989_bib0012","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1109\/71.265940","article-title":"A genetic algorithm for multiprocessor scheduling","volume":"5","author":"Hou","year":"1994","journal-title":"IEEE Trans Parallel Distrib Syst"},{"year":"2016","series-title":"arXiv preprint","author":"Santana","key":"10.1016\/j.compeleceng.2022.107989_bib0013"},{"key":"10.1016\/j.compeleceng.2022.107989_bib0014","doi-asserted-by":"crossref","unstructured":"E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda,A survey of autonomous driving: common practices and emerging technologies, arXiv preprint arXiv:1906.05113, 2019.","DOI":"10.1109\/ACCESS.2020.2983149"},{"issue":"3","key":"10.1016\/j.compeleceng.2022.107989_bib0015","doi-asserted-by":"crossref","first-page":"260","DOI":"10.1109\/71.993206","article-title":"Performance-effective and low-complexity task scheduling for heterogeneous computing","volume":"13","author":"Topcuoglu","year":"2002","journal-title":"IEEE Trans Parall Distrib Syst"},{"key":"10.1016\/j.compeleceng.2022.107989_bib0016","series-title":"Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence","first-page":"2094","article-title":"Deep reinforcement learning with double q-learning","author":"van Hasselt","year":"2016"},{"key":"10.1016\/j.compeleceng.2022.107989_bib0017","series-title":"Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence","first-page":"2094","article-title":"Deep reinforcement learning with double q-learning","author":"van Hasselt","year":"2016"},{"key":"10.1016\/j.compeleceng.2022.107989_bib0018","doi-asserted-by":"crossref","unstructured":"H. Zhao, Y. Zhang, P. Meng, H. Shi, L.E. Li, T. Lou, and J. Zhao, Towards safety-aware computing system design in autonomous vehicles, arXiv preprint arXiv:1905.08453, 2019.","DOI":"10.1109\/ICCD50377.2020.00031"},{"issue":"6","key":"10.1016\/j.compeleceng.2022.107989_bib0019","doi-asserted-by":"crossref","first-page":"1291","DOI":"10.1109\/TSMCC.2012.2218595","article-title":"Asurvey of actor-critic reinforcement learning: Standard and natural policy gradients","volume":"42","author":"Grondman","year":"2012","journal-title":"IEEE Trans Syst Man Cybern Part C (Appl Rev"},{"key":"10.1016\/j.compeleceng.2022.107989_bib0020","series-title":"Proceedings of the IEEE conference on computer vision and pattern recognition","first-page":"7263","article-title":"Yolo9000: better, faster, stronger","author":"Redmon","year":"2017"},{"issue":"5","key":"10.1016\/j.compeleceng.2022.107989_bib0021","doi-asserted-by":"crossref","first-page":"430","DOI":"10.1016\/j.future.2010.10.009","article-title":"Anovelmulti-agent reinforcement learning approach for job scheduling in grid computing","volume":"27","author":"Wu","year":"2011","journal-title":"Future Gener Comput Syst"},{"issue":"11","key":"10.1016\/j.compeleceng.2022.107989_bib0022","doi-asserted-by":"crossref","first-page":"2461","DOI":"10.1109\/TCSVT.2016.2592330","article-title":"Origami: A 803-gop\/s\/w convolutional network accelerator","volume":"27","author":"Cavigelli","year":"2017","journal-title":"IEEE Trans Circuits Syst Video Techn"},{"key":"10.1016\/j.compeleceng.2022.107989_bib0023","unstructured":"L. Wang, K. Wang, C. Pan, W. Xu, N. Aslam, and A. Nallanathan, Deep reinforcement learning based dynamic trajectory control for uav-assisted mobile edge computing, arXiv preprint arXiv:1911.03887, 2019."},{"key":"10.1016\/j.compeleceng.2022.107989_bib0024","series-title":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","first-page":"1653","article-title":"Reinforcement learning for cognitive radar task scheduling","author":"Gaafar","year":"2019"},{"key":"10.1016\/j.compeleceng.2022.107989_bib0025","series-title":"2017 IEEE International Symposium on High Performance Computer Architecture","article-title":"Toward spervasive and user satisfactory CNN across GPU microarchitectures","author":"Song","year":"2017"}],"container-title":["Computers and Electrical Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0045790622002580?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0045790622002580?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T23:04:04Z","timestamp":1672614244000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0045790622002580"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7]]},"references-count":25,"alternative-id":["S0045790622002580"],"URL":"https:\/\/doi.org\/10.1016\/j.compeleceng.2022.107989","relation":{},"ISSN":["0045-7906"],"issn-type":[{"type":"print","value":"0045-7906"}],"subject":[],"published":{"date-parts":[[2022,7]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A synergistic reinforcement learning-based framework design in driving automation","name":"articletitle","label":"Article Title"},{"value":"Computers and Electrical Engineering","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compeleceng.2022.107989","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107989"}}