{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,9]],"date-time":"2024-07-09T12:00:58Z","timestamp":1720526458401},"reference-count":30,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2021,3,1]],"date-time":"2021-03-01T00:00:00Z","timestamp":1614556800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers & Electrical Engineering"],"published-print":{"date-parts":[[2021,3]]},"DOI":"10.1016\/j.compeleceng.2020.106886","type":"journal-article","created":{"date-parts":[[2020,11,1]],"date-time":"2020-11-01T03:05:25Z","timestamp":1604199925000},"page":"106886","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":4,"special_numbering":"C","title":["Regression coefficients as triad scale for malware detection"],"prefix":"10.1016","volume":"90","author":[{"given":"Saud S.","family":"Alotaibi","sequence":"first","affiliation":[]}],"member":"78","reference":[{"issue":"2","key":"10.1016\/j.compeleceng.2020.106886_bib0001","first-page":"317","article-title":"malware-free intrusion: a novel approach to ransomware infection vectors","volume":"15","author":"Zimba","year":"2017","journal-title":"Int J Comput Sci Inform Secur"},{"issue":"1","key":"10.1016\/j.compeleceng.2020.106886_bib0002","first-page":"54","article-title":"Targeted cyberattacks: a superset of advanced persistent threats","volume":"11","author":"Sood","year":"2012","journal-title":"IEEE Secur Priv"},{"issue":"3","key":"10.1016\/j.compeleceng.2020.106886_bib0003","doi-asserted-by":"crossref","first-page":"365","DOI":"10.1080\/09636412.2013.816122","article-title":"Stuxnet and the limits of cyber warfare","volume":"22","author":"Lindsay","year":"2013","journal-title":"Secur Stud"},{"issue":"6","key":"10.1016\/j.compeleceng.2020.106886_bib0004","doi-asserted-by":"crossref","first-page":"1193","DOI":"10.1109\/TC.2012.65","article-title":"Malwise an effective and efficient classification system for packed and polymorphic malware","volume":"62","author":"Cesare","year":"2012","journal-title":"IEEE Trans Comput"},{"key":"10.1016\/j.compeleceng.2020.106886_bib0005","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1155\/2018\/7247095","article-title":"\u201cDetecting malware with an ensemble method based on deep neural network","volume":"2018","author":"Yan","year":"2018","journal-title":"Secur Commun Netw"},{"issue":"1","key":"10.1016\/j.compeleceng.2020.106886_bib0006","first-page":"1","article-title":"Review of machine learning models for credit scoring analysis","volume":"16","author":"Rudra Kumar","year":"2020","journal-title":"Revista Ingenier\u00eda Solidaria"},{"issue":"4","key":"10.1016\/j.compeleceng.2020.106886_bib0007","first-page":"113","article-title":"A static malware detection system using data mining methods","volume":"4","author":"Baldangombo","year":"2013","journal-title":"Int J Artif Intell Appl"},{"issue":"11","key":"10.1016\/j.compeleceng.2020.106886_bib0008","first-page":"2878","article-title":"A hybrid wrapper-filter approach for malware detection","volume":"9","author":"Alazab","year":"2014","journal-title":"J Netw"},{"key":"10.1016\/j.compeleceng.2020.106886_bib0009","series-title":"2014 IEEE 28th International Conference on Advanced Information Networking and Applications","first-page":"480","article-title":"MARD: a framework for metamorphic malware analysis and real-time detection","author":"Alam","year":"2014"},{"key":"10.1016\/j.compeleceng.2020.106886_bib0010","series-title":"2015 Fifth International Conference on Communication Systems and Network Technologies","first-page":"668","article-title":"DACOMM: detection and classification of metamorphic malware","author":"Mehra","year":"2015"},{"issue":"4","key":"10.1016\/j.compeleceng.2020.106886_bib0011","doi-asserted-by":"crossref","first-page":"639","DOI":"10.3233\/JCS-2010-0410","article-title":"Automatic analysis of malware behavior using machine learning","volume":"19","author":"Rieck","year":"2011","journal-title":"J Comput Secur"},{"issue":"17","key":"10.1016\/j.compeleceng.2020.106886_bib0012","first-page":"12","article-title":"malware detection using windows API sequence and machine learning","volume":"43","author":"Ravi","year":"2012","journal-title":"Int J Comput Appl"},{"key":"10.1016\/j.compeleceng.2020.106886_bib0013","series-title":"IFIP International Conference on Computer Information Systems and Industrial Management","first-page":"688","article-title":"Semantic set analysis for malware detection","author":"Van Nhuong","year":"2015"},{"issue":"9","key":"10.1016\/j.compeleceng.2020.106886_bib0014","doi-asserted-by":"crossref","first-page":"1336","DOI":"10.1631\/FITEE.1601325","article-title":"Automatic malware classification and new malware detection using machine learning","volume":"18","author":"Liu","year":"2017","journal-title":"Front Inform Technol Electron Eng"},{"key":"10.1016\/j.compeleceng.2020.106886_bib0015","first-page":"553","article-title":"Deep Learning versus gist descriptors for image-based malware classification","author":"Yajamanam","year":"2018","journal-title":"Icissp"},{"issue":"2","key":"10.1016\/j.compeleceng.2020.106886_bib0016","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1049\/iet-ifs.2017.0430","article-title":"\u201cmalware classification based on API calls and behavior analysis","volume":"12","author":"Pekta\u015f","year":"2017","journal-title":"IET Inf Secur"},{"issue":"6","key":"10.1016\/j.compeleceng.2020.106886_bib0017","doi-asserted-by":"crossref","first-page":"1455","DOI":"10.1109\/TIFS.2018.2879302","article-title":"Droidcat: effective android malware detection and categorization via app-level profiling","volume":"14","author":"Cai","year":"2018","journal-title":"IEEE Trans Inf Forensics Secur"},{"key":"10.1016\/j.compeleceng.2020.106886_bib0018","series-title":"2017 Resilience Week (RWS)","first-page":"30","article-title":"\u201cImproving the effectiveness and efficiency of dynamic malware analysis with machine learning","author":"Kilgallon","year":"2017"},{"key":"10.1016\/j.compeleceng.2020.106886_bib0019","doi-asserted-by":"crossref","first-page":"49418","DOI":"10.1109\/ACCESS.2018.2864871","article-title":"Malytics: a malware detection scheme","volume":"6","author":"Yousefi-Azar","year":"2018","journal-title":"IEEE Access"},{"issue":"1","key":"10.1016\/j.compeleceng.2020.106886_bib0020","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1109\/TDSC.2016.2536605","article-title":"Madam: effective and efficient behavior-based android malware detection and prevention","volume":"15","author":"Saracino","year":"2016","journal-title":"IEEE Trans Dependable Secure Comput"},{"key":"10.1016\/j.compeleceng.2020.106886_bib0021","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1016\/j.cose.2017.10.007","article-title":"A malware detection method based on family behavior graph","volume":"73","author":"Ding","year":"2018","journal-title":"Computers & Security"},{"key":"10.1016\/j.compeleceng.2020.106886_bib0022","series-title":"2017 International Conference on Intelligent Sustainable Systems (ICISS)","first-page":"795","article-title":"Dynamic malware analysis using machine learning algorithm","author":"Udayakumar","year":"2017"},{"issue":"1","key":"10.1016\/j.compeleceng.2020.106886_bib0023","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1080\/19361610.2018.1387734","article-title":"\u201cA new malware detection system using machine learning techniques for API call sequences","volume":"13","author":"Jerlin","year":"2018","journal-title":"J Appl Secur Res"},{"key":"10.1016\/j.compeleceng.2020.106886_bib0024","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/j.engappai.2016.12.016","article-title":"MAAR: robust features to detect malicious activity based on API calls, their arguments, and return values","volume":"59","author":"Salehi","year":"2017","journal-title":"Eng Appl Artif Intell"},{"key":"10.1016\/j.compeleceng.2020.106886_bib0025","unstructured":"Mehmet Bar\u0131\u015f, Yaman. A machine learning approach to predict advanced malware. pp, (2019): 1\u20135."},{"key":"10.1016\/j.compeleceng.2020.106886_bib0026","doi-asserted-by":"crossref","first-page":"118","DOI":"10.1016\/j.comnet.2019.06.015","article-title":"A multi-dimensional machine learning approach to predict advanced malware","volume":"160","author":"Bahtiyar","year":"2019","journal-title":"Comput Netw"},{"issue":"5","key":"10.1016\/j.compeleceng.2020.106886_bib0027","first-page":"845","article-title":"A modified t-score for feature selection","volume":"17","author":"Budak","year":"2016","journal-title":"Anadolu \u00dcniversitesi Bilim Ve Teknoloji Dergisi A-Uygulamal\u0131 Bilimler ve M\u00fchendislik"},{"issue":"6","key":"10.1016\/j.compeleceng.2020.106886_bib0028","doi-asserted-by":"crossref","DOI":"10.1155\/2015\/659101","article-title":"A novel approach to detect malware based on API call sequence analysis","volume":"11","author":"Ki","year":"2015","journal-title":"Int J Distrib Sens Netw"},{"key":"10.1016\/j.compeleceng.2020.106886_bib0029","doi-asserted-by":"crossref","unstructured":"Malicia Project, http:\/\/malicia-project.com\/dataset.html. Volume 14, Issue 1, February Pages 15-33, 2015.","DOI":"10.1007\/s10207-014-0248-7"},{"key":"10.1016\/j.compeleceng.2020.106886_bib0030","unstructured":"VirusTotal, https:\/\/www.virustotal.com.2017."}],"container-title":["Computers & Electrical Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0045790620307394?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0045790620307394?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,4,20]],"date-time":"2021-04-20T14:23:05Z","timestamp":1618928585000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0045790620307394"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,3]]},"references-count":30,"alternative-id":["S0045790620307394"],"URL":"https:\/\/doi.org\/10.1016\/j.compeleceng.2020.106886","relation":{},"ISSN":["0045-7906"],"issn-type":[{"value":"0045-7906","type":"print"}],"subject":[],"published":{"date-parts":[[2021,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Regression coefficients as triad scale for malware detection","name":"articletitle","label":"Article Title"},{"value":"Computers & Electrical Engineering","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compeleceng.2020.106886","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"106886"}}