{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T12:39:16Z","timestamp":1726231156260},"reference-count":55,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2020,6,1]],"date-time":"2020-06-01T00:00:00Z","timestamp":1590969600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers & Electrical Engineering"],"published-print":{"date-parts":[[2020,6]]},"DOI":"10.1016\/j.compeleceng.2020.106638","type":"journal-article","created":{"date-parts":[[2020,4,16]],"date-time":"2020-04-16T23:05:50Z","timestamp":1587078350000},"page":"106638","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":2,"special_numbering":"C","title":["A new 3D segmentation approach using extreme learning machine algorithm and morphological operations"],"prefix":"10.1016","volume":"84","author":[{"given":"Ertu\u011frul","family":"Kaya","sequence":"first","affiliation":[]},{"given":"Eser","family":"Sert","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compeleceng.2020.106638_bib0001","series-title":"Image processing principles and applications","author":"Achary","year":"2005"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0002","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1016\/j.isprsjprs.2015.01.011","article-title":"Octree-based region growing for point cloud segmentation","volume":"104","author":"Vo","year":"2015","journal-title":"ISPRS J ISPRS J Photogramm Remote Sensg"},{"issue":"10","key":"10.1016\/j.compeleceng.2020.106638_bib0003","doi-asserted-by":"crossref","first-page":"4199","DOI":"10.1109\/JSTARS.2014.2349003","article-title":"A methodology for automated segmentation and reconstruction of urban 3-D buildings from ALS point clouds","volume":"7","author":"Chen","year":"2014","journal-title":"IEEE J Sel Top Appl Earth Observ Remote Sens"},{"issue":"3","key":"10.1016\/j.compeleceng.2020.106638_bib0004","doi-asserted-by":"crossref","first-page":"424","DOI":"10.1109\/LGRS.2017.2647816","article-title":"Geometric primitive extraction from point clouds of construction sites using VGS","volume":"14","author":"Xu","year":"2017","journal-title":"IEEE Geosci Remote Sens Lett"},{"issue":"2","key":"10.1016\/j.compeleceng.2020.106638_bib0005","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1109\/LGRS.2015.2508505","article-title":"Planar segmentation using range images from terrestrial laser scanning","volume":"13","author":"Zhou","year":"2016","journal-title":"IEEE Geosci Remote Sens Lett"},{"issue":"2","key":"10.1016\/j.compeleceng.2020.106638_bib0006","doi-asserted-by":"crossref","first-page":"140","DOI":"10.3390\/s16020140","article-title":"Segmentation of planar surfaces from laser scanning data using the magnitude of normal position vector for adaptive neighborhoods","volume":"16","author":"Kim","year":"2016","journal-title":"Sensors"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0007","series-title":"Neural information processing. iconip 2016. lecture notes in computer science","article-title":"Energy-based multi-plane detection from 3D point clouds","author":"Wang","year":"2016"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0008","series-title":"2016 IEEE\/RSJ international conference on intelligent robots and systems (IROS)","first-page":"4199","article-title":"Geometrically consistent plane extraction for dense indoor 3D maps segmentation","author":"Pham","year":"2016"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0009","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1016\/j.isprsjprs.2018.01.013","article-title":"An efficient global energy optimization approach for robust 3D plane segmentation of point clouds","volume":"137","author":"Dong","year":"2018","journal-title":"ISPRS J Photogramm Remote Sens"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0010","doi-asserted-by":"crossref","first-page":"353","DOI":"10.1016\/j.cam.2017.03.025","article-title":"3D shape segmentation using multiple random walkers","volume":"329","author":"Zhou","year":"2018","journal-title":"J Comput Appl Math J Comput Appl Math"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0011","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1016\/j.cag.2017.07.030","article-title":"3D shape segmentation via shape fully convolutional networks","volume":"70","author":"Wang","year":"2018","journal-title":"Comput Graph"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0012","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.gmod.2018.01.001","article-title":"3D mesh segmentation via multi-branch 1D convolutional neural networks","volume":"96","author":"George","year":"2018","journal-title":"Graph Models"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0013","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1016\/j.patrec.2017.12.016","article-title":"Voxel-based segmentation of 3D point clouds from construction sites using a probabilistic connectivity model","volume":"102","author":"Xu","year":"2018","journal-title":"Pattern Recognit Lett"},{"issue":"5","key":"10.1016\/j.compeleceng.2020.106638_bib0014","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1111\/cgf.12434","article-title":"3D shape segmentation and labeling via extreme learning machine","volume":"33","author":"Xie","year":"2014","journal-title":"Comput Graph Forum"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0015","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/j.cag.2017.05.011","article-title":"A multi-view recurrent neural network for 3D mesh segmentation","volume":"66","author":"Le","year":"2017","journal-title":"Comput Graph"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0016","doi-asserted-by":"crossref","first-page":"312","DOI":"10.1016\/j.asoc.2017.07.001","article-title":"A two-stage fuzzy multi-objective framework for segmentation of 3D MRI brain image data","volume":"60","author":"Kahali","year":"2017","journal-title":"Appl Soft Comput"},{"issue":"1\u20133","key":"10.1016\/j.compeleceng.2020.106638_bib0017","first-page":"489","article-title":"Extreme learning machine: theory and applications","volume":"70","author":"Bin","year":"2006","journal-title":"Neurocomputing"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0018","series-title":"Computer vision and pattern recognition (CVPR), 2010 IEEE conference on","first-page":"3105","article-title":"Segmentation of building facades using procedural shape priors","author":"Teboul","year":"2010"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0019","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1016\/j.isprsjprs.2014.04.022","article-title":"A global optimization approach to roof segmentation from airborne lidar point clouds","volume":"94","author":"Yan","year":"2014","journal-title":"ISPRS J Photogramm Remote Sens"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0020","doi-asserted-by":"crossref","first-page":"499","DOI":"10.1016\/j.eswa.2018.08.019","article-title":"A new edge detection approach via neutrosophy based on maximum norm entropy","volume":"115","author":"Sert","year":"2019","journal-title":"Expert Syst Appl"},{"issue":"7","key":"10.1016\/j.compeleceng.2020.106638_bib0021","doi-asserted-by":"crossref","first-page":"1459","DOI":"10.1007\/s00138-012-0466-9","article-title":"The unified extreme learning machines and discriminative random fields for automatic knee cartilage and meniscus segmentation from multi-contrast MR images","volume":"24","author":"Zhang","year":"2013","journal-title":"Mach Vis Appl"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0022","doi-asserted-by":"crossref","first-page":"332","DOI":"10.1016\/j.measurement.2019.01.060","article-title":"A novel approach for liver image classification: ph-c-elm","volume":"137","author":"Do\u011fantekin","year":"2019","journal-title":"Measurement"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0023","series-title":"19th IEEE international conference on Image processing (ICIP)","first-page":"2209","article-title":"Image super-resolution by extreme learning machine","author":"An","year":"2012"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0024","doi-asserted-by":"crossref","first-page":"176","DOI":"10.1016\/j.neucom.2012.02.043","article-title":"Neurocomputing semantic concept detection for video based on extreme learning machine","volume":"102","author":"Lu","year":"2013","journal-title":"Neurocomputing"},{"issue":"10\u201311","key":"10.1016\/j.compeleceng.2020.106638_bib0025","doi-asserted-by":"crossref","first-page":"2588","DOI":"10.1016\/j.patcog.2011.03.013","article-title":"Human face recognition based on multidimensional PCA and extreme learning machine","volume":"44","author":"Mohammed","year":"2011","journal-title":"Pattern Recognit"},{"issue":"3","key":"10.1016\/j.compeleceng.2020.106638_bib0026","doi-asserted-by":"crossref","first-page":"1013","DOI":"10.1007\/s11045-016-0411-6","article-title":"NMR image segmentation based on unsupervised extreme learning machine","volume":"28","author":"Xin","year":"2017","journal-title":"Multidimens Syst Signal Process"},{"issue":"1","key":"10.1016\/j.compeleceng.2020.106638_bib0027","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1007\/s00521-014-1764-0","article-title":"Breast tumor detection in double views mammography based on extreme learning machine","volume":"27","author":"Wang","year":"2016","journal-title":"Neural Comput Appl"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0028","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1016\/j.neucom.2012.02.040","article-title":"Regularized extreme learning machine for regression with missing data","volume":"102","author":"Lendasse","year":"2013","journal-title":"Neurocomputing"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0029","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/j.neucom.2017.01.113","article-title":"Gaussian derivative models and ensemble extreme learning machine for texture image classification","volume":"277","author":"Yan","year":"2018","journal-title":"Neurocomputing"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0030","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1016\/j.apacoust.2018.10.031","article-title":"Side scan sonar image segmentation and synthesis based on extreme learning machine","volume":"146","author":"Song","year":"2019","journal-title":"Appli Acoust"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0031","doi-asserted-by":"crossref","first-page":"709","DOI":"10.1016\/j.ejmp.2016.04.003","article-title":"Liver vessel segmentation based on extreme learning machine","volume":"32","author":"Zeng","year":"2016","journal-title":"Phys Med"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0032","article-title":"A fused CNN model for WBC detection with MRMR feature selection and extreme learning machine","author":"\u00d6zyurt","year":"2019","journal-title":"Soft Comput"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0033","doi-asserted-by":"crossref","first-page":"576","DOI":"10.1016\/j.compeleceng.2017.01.017","article-title":"A new modified neutrosophic set segmentation approach","volume":"65","author":"Sert","year":"2018","journal-title":"Comput Electr Eng"},{"issue":"3","key":"10.1016\/j.compeleceng.2020.106638_bib0034","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1111\/1467-8659.00581","article-title":"Metamorphosis of polyhedral surfaces using decomposition","volume":"21","author":"Shlafman","year":"2002","journal-title":"Comput Graph Forum"},{"issue":"3","key":"10.1016\/j.compeleceng.2020.106638_bib0035","doi-asserted-by":"crossref","first-page":"954","DOI":"10.1145\/882262.882369","article-title":"Hierarchical mesh decomposition using fuzzy clustering and cuts","volume":"22","author":"Katz","year":"2003","journal-title":"ACM Trans Graphs (TOG)"},{"issue":"5","key":"10.1016\/j.compeleceng.2020.106638_bib0036","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1145\/1409060.1409098","article-title":"Randomized cuts for 3D mesh analysis","volume":"27","author":"Golovinskiy","year":"2008","journal-title":"ACM Trans Graph (TOG)"},{"issue":"1","key":"10.1016\/j.compeleceng.2020.106638_bib0037","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2611811","article-title":"Shape segmentation by approximate convexity analysis","volume":"34","author":"Kaick","year":"2014","journal-title":"ACM Trans Graph (TOG)"},{"issue":"7","key":"10.1016\/j.compeleceng.2020.106638_bib0038","doi-asserted-by":"crossref","first-page":"1125","DOI":"10.1109\/TVCG.2011.131","article-title":"Mesh segmentation with concavity-aware fields","volume":"18","author":"Au","year":"2012","journal-title":"IEEE Trans Vis Comput Graph"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0039","series-title":"Proceedings of the 12th pacific conference on computer graphics and applications","first-page":"298","article-title":"Segmentation of 3D meshes through spectral clustering","author":"Rong","year":"2004"},{"issue":"8","key":"10.1016\/j.compeleceng.2020.106638_bib0040","doi-asserted-by":"crossref","first-page":"649","DOI":"10.1007\/s00371-005-0344-9","article-title":"Mesh segmentation using feature point and core extraction","volume":"21","author":"Katz","year":"2005","journal-title":"Vis Comput"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0041","unstructured":"Zhu C., Xu K., Chaudhuri S., Yi L., Guibas L.J., Zhang H.CoSegNet: deep co-segmentation of 3D shapes with group consistency loss, arXiv:1903.10297v32019:1\u201310."},{"key":"10.1016\/j.compeleceng.2020.106638_bib0042","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1016\/j.cagd.2016.02.015","article-title":"Unsupervised 3D shape segmentation and co- segmentation via deep learning","volume":"43","author":"Shu","year":"2016","journal-title":"Comput Aided Geom Des"},{"issue":"5","key":"10.1016\/j.compeleceng.2020.106638_bib0043","doi-asserted-by":"crossref","first-page":"1703","DOI":"10.1111\/j.1467-8659.2012.03175.x","article-title":"Co-segmentation of 3D shapes via subspace clustering","volume":"31","author":"Hu","year":"2012","journal-title":"Comput Graph Forum"},{"issue":"6","key":"10.1016\/j.compeleceng.2020.106638_bib0044","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2366145.2366184","article-title":"Active co-analysis of a set of shapes","volume":"31","author":"Wang","year":"2012","journal-title":"ACM Trans Graph"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0045","series-title":"IEEE international joint conference on neural networks","first-page":"985","article-title":"Extreme learning machine: a new learning scheme of feedforward neural networks","author":"Huang","year":"2004"},{"issue":"01\u201303","key":"10.1016\/j.compeleceng.2020.106638_bib0046","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1016\/j.neucom.2005.12.126","article-title":"Siew ck extreme learning machine: theory and applications","volume":"70","author":"Huang","year":"2006","journal-title":"Neurocomputing"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0047","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1016\/j.neucom.2019.01.010","article-title":"HCKBoost: hybridized composite kernel boosting with extreme learning machines for hyperspectral image classification","volume":"334","author":"Ergul","year":"2019","journal-title":"Neurocomputing"},{"issue":"1","key":"10.1016\/j.compeleceng.2020.106638_bib0048","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1080\/00401706.2000.10485983","article-title":"Ridge regression: biased estimation for nonorthogonal problems","volume":"42","author":"Hoerl","year":"2000","journal-title":"Technometrics"},{"issue":"2","key":"10.1016\/j.compeleceng.2020.106638_bib0049","doi-asserted-by":"crossref","first-page":"513","DOI":"10.1109\/TSMCB.2011.2168604","article-title":"Extreme learning machine for regression and multiclass classification","volume":"42","author":"Huang","year":"2012","journal-title":"IEEE Trans Syst, Man, Cybern, Part B (Cybernetics)"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0050","unstructured":"Mathworks, \u201cMathWorks-pointcloud2image\u201d, MathWorks, 2019. Available at:https:\/\/www.mathworks.com\/matlabcentral\/fileexchange\/55031-pointcloud2image-x-y-z-numr-numc. [Access time: 27-January-2019]."},{"key":"10.1016\/j.compeleceng.2020.106638_bib0051","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1145\/355744.355745","article-title":"An algorithm for finding best matches in logarithmic expected time","volume":"3","author":"Friedman","year":"1977","journal-title":"ACM Trans Math Softw (TOMS)"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0052","unstructured":"Mathworks, \u201cMathworks regionprops\u201d, MathWorks, 2019. Available at:https:\/\/www.mathworks.com\/help\/images\/ref\/regionprops.html. [Access time: 26-January-2019]."},{"key":"10.1016\/j.compeleceng.2020.106638_bib0053","unstructured":"Mathworks, \u201cMathWorks bwlabel\u201d, MathWorks, 2019. Available at:https:\/\/www.mathworks.com\/help\/images\/ref\/bwlabel.html. [Access Time: 27-January-2019]."},{"key":"10.1016\/j.compeleceng.2020.106638_bib0054","series-title":"Pattern recognition with fuzzy objective function algorithms","author":"Bezdek","year":"1981"},{"key":"10.1016\/j.compeleceng.2020.106638_bib0055","doi-asserted-by":"crossref","first-page":"276","DOI":"10.1016\/j.bspc.2018.08.025","article-title":"Brain tumor segmentation using neutrosophic expert maximum fuzzy-sure entropy and other approaches","volume":"47","author":"Sert","year":"2019","journal-title":"Biomed Signal Process Control"}],"container-title":["Computers & Electrical Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0045790620304936?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0045790620304936?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2021,3,9]],"date-time":"2021-03-09T06:25:45Z","timestamp":1615271145000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0045790620304936"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,6]]},"references-count":55,"alternative-id":["S0045790620304936"],"URL":"https:\/\/doi.org\/10.1016\/j.compeleceng.2020.106638","relation":{},"ISSN":["0045-7906"],"issn-type":[{"value":"0045-7906","type":"print"}],"subject":[],"published":{"date-parts":[[2020,6]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A new 3D segmentation approach using extreme learning machine algorithm and morphological operations","name":"articletitle","label":"Article Title"},{"value":"Computers & Electrical Engineering","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compeleceng.2020.106638","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2020 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"106638"}}