{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,20]],"date-time":"2024-11-20T05:36:54Z","timestamp":1732081014430,"version":"3.28.0"},"reference-count":96,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,8,1]],"date-time":"2023-08-01T00:00:00Z","timestamp":1690848000000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,5,22]],"date-time":"2023-05-22T00:00:00Z","timestamp":1684713600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers & Chemical Engineering"],"published-print":{"date-parts":[[2023,8]]},"DOI":"10.1016\/j.compchemeng.2023.108291","type":"journal-article","created":{"date-parts":[[2023,5,15]],"date-time":"2023-05-15T10:42:19Z","timestamp":1684147339000},"page":"108291","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":9,"special_numbering":"C","title":["Application of interpretable group-embedded graph neural networks for pure compound properties"],"prefix":"10.1016","volume":"176","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3297-6054","authenticated-orcid":false,"given":"Adem R.N.","family":"Aouichaoui","sequence":"first","affiliation":[]},{"given":"Fan","family":"Fan","sequence":"additional","affiliation":[]},{"given":"Jens","family":"Abildskov","sequence":"additional","affiliation":[]},{"given":"G\u00fcrkan","family":"Sin","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compchemeng.2023.108291_bib0001","first-page":"68","article-title":"Next generation pure component property estimation models: with and without machine learning techniques","author":"Alshehri","year":"2022","journal-title":"AlChE J."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0002","series-title":"Computer Aided Chemical Engineering","doi-asserted-by":"crossref","first-page":"755","DOI":"10.1016\/B978-0-323-88506-5.50118-2","article-title":"Comparison of group-contribution and machine learning-based property prediction models with uncertainty quantification","author":"Aouichaoui","year":"2021"},{"key":"10.1016\/j.compchemeng.2023.108291_bib0003","doi-asserted-by":"crossref","first-page":"725","DOI":"10.1021\/acs.jcim.2c01091","article-title":"Combining group-contribution concept and graph neural networks toward interpretable molecular property models","volume":"63","author":"Aouichaoui","year":"2023","journal-title":"J. Chem. Inf. Model."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0004","first-page":"68","article-title":"Uncertainty estimation in deep learning-based property models: graph neural networks applied to the critical properties","author":"Aouichaoui","year":"2022","journal-title":"AlChE J."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0005","series-title":"32nd European Symposium on Computer Aided Process Engineering","first-page":"1357","article-title":"Application of outlier treatment towards improved property prediction models","author":"Aouichaoui","year":"2022"},{"key":"10.1016\/j.compchemeng.2023.108291_bib0006","doi-asserted-by":"crossref","first-page":"11481","DOI":"10.1021\/jp992971a","article-title":"New methods for estimating the heats of formation, heat capacities, and entropies of liquids and gases","volume":"103","author":"Benson","year":"1999","journal-title":"J. Phys. Chem. A"},{"key":"10.1016\/j.compchemeng.2023.108291_bib0007","doi-asserted-by":"crossref","first-page":"9683","DOI":"10.1021\/acs.est.7b01756","article-title":"Group contribution approach to predict the refractive index of pure organic components in ambient organic aerosol","volume":"51","author":"Cai","year":"2017","journal-title":"Environ. Sci. Technol."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0008","doi-asserted-by":"crossref","first-page":"222","DOI":"10.1016\/j.jlp.2009.01.002","article-title":"Prediction of the net heat of combustion of organic compounds based on atom-type electrotopological state indices","volume":"22","author":"Cao","year":"2009","journal-title":"J. Loss Prev. Process Ind."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0009","doi-asserted-by":"crossref","first-page":"3515","DOI":"10.1016\/0009-2509(95)00191-7","article-title":"Group-contribution estimation of critical temperature with only chemical structure","volume":"50","author":"Tu","year":"1995","journal-title":"Chem. Eng. Sci."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0010","doi-asserted-by":"crossref","first-page":"721","DOI":"10.1016\/j.cherd.2019.04.038","article-title":"CAMD for entrainer screening of extractive distillation process based on new thermodynamic criteria","volume":"147","author":"Cignitti","year":"2019","journal-title":"Chem. Eng. Res. Des."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0011","doi-asserted-by":"crossref","first-page":"606","DOI":"10.1038\/s41567-020-0921-x","article-title":"Tail risk of contagious diseases","volume":"16","author":"Cirillo","year":"2020","journal-title":"Nat. Phys."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0012","doi-asserted-by":"crossref","first-page":"1757","DOI":"10.1021\/acs.jcim.6b00601","article-title":"Convolutional embedding of attributed molecular graphs for physical property prediction","volume":"57","author":"Coley","year":"2017","journal-title":"J. Chem. Inf. Model."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0013","doi-asserted-by":"crossref","first-page":"1697","DOI":"10.1002\/aic.690401011","article-title":"New group contribution method for estimating properties of pure compounds","volume":"40","author":"Constantinou","year":"1994","journal-title":"AlChE J."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0014","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/0378-3812(94)02593-P","article-title":"Estimation of the acentric factor and the liquid molar volume at 298 K using a new group contribution method","volume":"103","author":"Constantinou","year":"1995","journal-title":"Fluid Phase Equilib."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0015","first-page":"2224","article-title":"Convolutional networks on graphs for learning molecular fingerprints","author":"Duvenaud","year":"2015","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0016","article-title":"Computer-aided design and solvent selection for organic paint and coating formulations","volume":"162","author":"Enekvist","year":"2022","journal-title":"Prog. Org. Coat."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0017","doi-asserted-by":"crossref","first-page":"393","DOI":"10.1016\/j.compchemeng.2010.12.013","article-title":"Thermophysical and thermochemical properties on-demand for chemical process and product design","volume":"35","author":"Frenkel","year":"2011","journal-title":"Comput. Chem. Eng."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0018","doi-asserted-by":"crossref","first-page":"1225","DOI":"10.1080\/00268976.2016.1275856","article-title":"Uncertainty assessment of equations of state with application to an organic Rankine cycle","volume":"115","author":"Frutiger","year":"2017","journal-title":"Mol. Phys."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0019","doi-asserted-by":"crossref","first-page":"783","DOI":"10.1016\/j.jhazmat.2016.06.018","article-title":"Group-contribution based property estimation and uncertainty analysis for flammability-related properties","volume":"318","author":"Frutiger","year":"2016","journal-title":"J. Hazard. Mater."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0020","doi-asserted-by":"crossref","first-page":"602","DOI":"10.1021\/acs.jced.5b00750","article-title":"A comprehensive methodology for development, parameter estimation, and uncertainty analysis of group contribution based property models-an application to the heat of combustion","volume":"61","author":"Frutiger","year":"2016","journal-title":"J. Chem. Eng. Data"},{"key":"10.1016\/j.compchemeng.2023.108291_bib0021","doi-asserted-by":"crossref","first-page":"184","DOI":"10.1016\/j.coche.2019.04.007","article-title":"Group contribution-based property estimation methods: advances and perspectives","volume":"23","author":"Gani","year":"2019","journal-title":"Curr. Opin. Chem. Eng."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0022","doi-asserted-by":"crossref","first-page":"151","DOI":"10.3390\/molecules21020151","article-title":"Chemoinformatics: achievements and challenges, a personal view","volume":"21","author":"Gasteiger","year":"2016","journal-title":"Molecules"},{"key":"10.1016\/j.compchemeng.2023.108291_bib0023","doi-asserted-by":"crossref","first-page":"3037","DOI":"10.1021\/ef800375b","article-title":"Quantitative structure\u2212property relationship for prediction of the lower flammability limit of pure compounds","volume":"22","author":"Gharagheizi","year":"2008","journal-title":"Energy Fuels"},{"key":"10.1016\/j.compchemeng.2023.108291_bib0024","doi-asserted-by":"crossref","first-page":"1930","DOI":"10.1021\/je5000633","article-title":"Group contribution model for the prediction of refractive indices of organic compounds","volume":"59","author":"Gharagheizi","year":"2014","journal-title":"J. Chem. Eng. Data"},{"key":"10.1016\/j.compchemeng.2023.108291_bib0025","series-title":"34th International Conference on Machine Learning","first-page":"2053","article-title":"Neural message passing for quantum chemistry","author":"Gilmer","year":"2017"},{"key":"10.1016\/j.compchemeng.2023.108291_bib0026","doi-asserted-by":"crossref","first-page":"2352","DOI":"10.1021\/ie00058a017","article-title":"Vapor-liquid equilibria by UNIFAC group contribution. 5. Revision and extension","volume":"30","author":"Hansen","year":"1991","journal-title":"Ind. Eng. Chem. Res."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0027","doi-asserted-by":"crossref","first-page":"27955","DOI":"10.1021\/acsomega.1c03839","article-title":"Knowledge-embedded message-passing neural networks: improving molecular property prediction with human knowledge","volume":"6","author":"Hasebe","year":"2021","journal-title":"ACS Omega"},{"key":"10.1016\/j.compchemeng.2023.108291_bib0028","doi-asserted-by":"crossref","first-page":"3770","DOI":"10.1021\/acs.jcim.0c00502","article-title":"Uncertainty quantification using neural networks for molecular property prediction","volume":"60","author":"Hirschfeld","year":"2020","journal-title":"J. Chem. Inf. Model."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0029","doi-asserted-by":"crossref","first-page":"2823","DOI":"10.1021\/ci300350r","article-title":"Estimation of environment-related properties of chemicals for design of sustainable processes: development of group-contribution+ (GC +) property models and uncertainty analysis","volume":"52","author":"Hukkerikar","year":"2012","journal-title":"J. Chem. Inf. Model."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0030","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1016\/j.fluid.2013.03.018","article-title":"A method to estimate the enthalpy of formation of organic compounds with chemical accuracy","volume":"348","author":"Hukkerikar","year":"2013","journal-title":"Fluid Phase Equilib."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0031","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1016\/j.fluid.2012.02.010","article-title":"Group-contribution\u00a0+\u00a0(GC +) based estimation of properties of pure components: Improved property estimation and uncertainty analysis","volume":"321","author":"Hukkerikar","year":"2012","journal-title":"Fluid Phase Equilib."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0032","doi-asserted-by":"crossref","first-page":"5936","DOI":"10.1021\/acs.jcim.0c00416","article-title":"Comprehensive study on molecular supervised learning with graph neural networks","volume":"60","author":"Hwang","year":"2020","journal-title":"J. Chem. Inf. Model."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0033","doi-asserted-by":"crossref","first-page":"2143","DOI":"10.1021\/acs.est.0c05231","article-title":"Integrated model for understanding N2O emissions from wastewater treatment plants: a deep learning approach","volume":"55","author":"Hwangbo","year":"2021","journal-title":"Environ. Sci. Technol."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0034","doi-asserted-by":"crossref","first-page":"20916","DOI":"10.1021\/acs.iecr.0c03759","article-title":"Group contribution method to estimate the biodegradability of organic compounds","volume":"59","author":"Jhamb","year":"2020","journal-title":"Ind. Eng. Chem. Res."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0035","doi-asserted-by":"crossref","first-page":"431","DOI":"10.21105\/joss.00431","article-title":"pyGPGO: bayesian optimization for python","volume":"2","author":"Jim\u00e9nez","year":"2017","journal-title":"J. Open Source Software"},{"key":"10.1016\/j.compchemeng.2023.108291_bib0036","doi-asserted-by":"crossref","first-page":"573","DOI":"10.1038\/s42256-020-00236-4","article-title":"Drug discovery with explainable artificial intelligence","volume":"2","author":"Jim\u00e9nez-Luna","year":"2020","journal-title":"Nat. Mach. Intell."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0037","doi-asserted-by":"crossref","first-page":"1083","DOI":"10.1021\/acs.jcim.0c01344","article-title":"Coloring molecules with explainable artificial intelligence for preclinical relevance assessment","volume":"61","author":"Jim\u00e9nez-Luna","year":"2021","journal-title":"J. Chem. Inf. Model."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0038","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1080\/00986448708960487","article-title":"Estimation of pure-component properties from group-contributions","volume":"57","author":"Joback","year":"1987","journal-title":"Chem. Eng. Commun."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0039","doi-asserted-by":"crossref","first-page":"12306","DOI":"10.1021\/acsomega.1c01247","article-title":"Quantitative toxicity prediction via meta ensembling of multitask deep learning models","volume":"6","author":"Karim","year":"2021","journal-title":"ACS Omega"},{"key":"10.1016\/j.compchemeng.2023.108291_bib0040","doi-asserted-by":"crossref","first-page":"1247","DOI":"10.1016\/j.ces.2005.08.031","article-title":"A computer-aided molecular design framework for crystallization solvent design","volume":"61","author":"Karunanithi","year":"2006","journal-title":"Chem. Eng. Sci."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0041","doi-asserted-by":"crossref","first-page":"5714","DOI":"10.1021\/cr900238d","article-title":"Quantitative correlation of physical and chemical properties with chemical structure: utility for prediction","volume":"110","author":"Katritzky","year":"2010","journal-title":"Chem. Rev."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0042","series-title":"3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings","first-page":"1","article-title":"Adam: a method for stochastic optimization","author":"Kingma","year":"2015"},{"key":"10.1016\/j.compchemeng.2023.108291_bib0043","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1002\/aic.690300119","article-title":"Estimation of critical properties with group contribution methods","volume":"30","author":"Klincewicz","year":"1984","journal-title":"AlChE J."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0044","unstructured":"Landrum, G., 2021. RDKit: Open-source cheminformatics."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0045","doi-asserted-by":"crossref","first-page":"542","DOI":"10.1021\/ci700372s","article-title":"Using molecular fingerprint as descriptors in the QSPR study of lipophilicity","volume":"48","author":"Liu","year":"2008","journal-title":"J. Chem. Inf. Model."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0046","doi-asserted-by":"crossref","first-page":"911","DOI":"10.1080\/1062936X.2016.1253611","article-title":"An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modelling","volume":"27","author":"Mansouri","year":"2016","journal-title":"SAR QSAR Environ. Res."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0047","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1016\/S0378-3812(01)00431-9","article-title":"Group-contribution based estimation of pure component properties","volume":"183\u2013184","author":"Marrero","year":"2001","journal-title":"Fluid Phase Equilib."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0048","doi-asserted-by":"crossref","first-page":"1378","DOI":"10.1021\/tx0155045","article-title":"Prediction of the acute toxicity (96-h LC50) of organic compounds to the fathead minnow (pimephales promelas) using a group contribution method","volume":"14","author":"Martin","year":"2001","journal-title":"Chem. Res. Toxicol."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0049","first-page":"10","article-title":"Improving small molecule pka prediction using transfer learning with graph neural networks","author":"Mayr","year":"2022","journal-title":"Front. Chem."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0050","series-title":"Prediction of Bioconcentration Factors (BCF) using Graph Neural Networks","first-page":"991","author":"Medina","year":"2021"},{"key":"10.1016\/j.compchemeng.2023.108291_bib0051","first-page":"213","article-title":"Group contribution revisited: the enthalpy of formation of organic compounds with \u201cchemical accuracy\u201d part III","volume":"2","author":"Meier","year":"2022","journal-title":"Appl. Chem."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0052","first-page":"24","article-title":"Group contribution revisited: the enthalpy of formation of organic compounds with \u201cchemical accuracy","volume":"5","author":"Meier","year":"2021","journal-title":"Chem. Eng."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0053","first-page":"111","article-title":"Group contribution revisited: the enthalpy of formation of organic compounds with \u201cchemical accuracy","volume":"1","author":"Meier","year":"2021","journal-title":"Part II. Appl. Chem."},{"year":"2014","series-title":"Wastewater engineering: treatment and resource recovery","key":"10.1016\/j.compchemeng.2023.108291_bib0054"},{"key":"10.1016\/j.compchemeng.2023.108291_bib0055","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1016\/j.fluid.2016.10.020","article-title":"Prediction of properties of new halogenated olefins using two group contribution approaches","volume":"433","author":"Mondejar","year":"2017","journal-title":"Fluid. Phase Equilib."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0056","doi-asserted-by":"crossref","first-page":"220","DOI":"10.1016\/j.fluid.2018.12.020","article-title":"Uncertainty in the prediction of the thermophysical behavior of new halogenated working fluids","volume":"485","author":"Mondejar","year":"2019","journal-title":"Fluid. Phase Equilib."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0057","doi-asserted-by":"crossref","first-page":"327","DOI":"10.3390\/liquids2040020","article-title":"Revision and extension of a generally applicable group additivity method for the calculation of the refractivity and polarizability of organic molecules at 298.15 K","volume":"2","author":"Naef","year":"2022","journal-title":"Liquids"},{"key":"10.1016\/j.compchemeng.2023.108291_bib0058","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1177\/026119290503300209","article-title":"Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships","volume":"33","author":"Netzeva","year":"2005","journal-title":"ATLA Altern. Lab. Anim."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0059","doi-asserted-by":"crossref","first-page":"1041","DOI":"10.1021\/je000244z","article-title":"The CAPEC database","volume":"46","author":"Nielsen","year":"2001","journal-title":"J. Chem. Eng. Data"},{"key":"10.1016\/j.compchemeng.2023.108291_bib0060","doi-asserted-by":"crossref","DOI":"10.1016\/j.compchemeng.2021.107524","article-title":"Fast, easy-to-use, machine learning-developed models of prediction of flash point, heat of combustion, and lower and upper flammability limits for inherently safer design","volume":"155","author":"Park","year":"2021","journal-title":"Comput. Chem. Eng."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0061","doi-asserted-by":"crossref","first-page":"9339","DOI":"10.1021\/acscatal.9b02925","article-title":"DFT and QSAR studies of ethylene polymerization by zirconocene catalysts","volume":"9","author":"Parveen","year":"2019","journal-title":"ACS Catal."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0062","doi-asserted-by":"crossref","DOI":"10.1016\/j.jmgm.2022.108149","article-title":"Graph convolutional neural network applied to the prediction of normal boiling point","volume":"112","author":"Qu","year":"2022","journal-title":"J. Mol. Graph Model."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0063","doi-asserted-by":"crossref","first-page":"722","DOI":"10.1021\/ar500432k","article-title":"The chemical space project","volume":"48","author":"Reymond","year":"2015","journal-title":"Acc. Chem. Res."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0064","doi-asserted-by":"crossref","first-page":"742","DOI":"10.1021\/ci100050t","article-title":"Extended-connectivity fingerprints","volume":"50","author":"Rogers","year":"2010","journal-title":"J. Chem. Inf. Model."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0065","unstructured":"Rowley, R.I., Wilding, W.V., Oscarson, J.L., Giles, N.F., 2019. DIPPR data compilation of pure chemical properties."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0066","doi-asserted-by":"crossref","first-page":"2864","DOI":"10.1021\/ci300415d","article-title":"Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17","volume":"52","author":"Ruddigkeit","year":"2012","journal-title":"J. Chem. Inf. Model."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0067","doi-asserted-by":"crossref","first-page":"8438","DOI":"10.1039\/C9SC01992H","article-title":"A Bayesian graph convolutional network for reliable prediction of molecular properties with uncertainty quantification","volume":"10","author":"Ryu","year":"2019","journal-title":"Chem. Sci."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0068","doi-asserted-by":"crossref","DOI":"10.1002\/adts.201800069","article-title":"A bayesian approach to predict solubility parameters","volume":"2","author":"Sanchez-Lengeling","year":"2019","journal-title":"Adv. Theory Simul."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0069","doi-asserted-by":"crossref","first-page":"2697","DOI":"10.1021\/acs.jcim.9b00975","article-title":"Evaluating scalable uncertainty estimation methods for deep learning-based molecular property prediction","volume":"60","author":"Scalia","year":"2020","journal-title":"J. Chem. Inf. Model."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0070","doi-asserted-by":"crossref","first-page":"11395","DOI":"10.1021\/acs.energyfuels.0c01533","article-title":"Graph neural networks for prediction of fuel ignition quality","volume":"34","author":"Schweidtmann","year":"2020","journal-title":"Energy Fuels"},{"key":"10.1016\/j.compchemeng.2023.108291_bib0071","doi-asserted-by":"crossref","DOI":"10.1088\/2632-2153\/ab8aa3","article-title":"A machine learning workflow for molecular analysis: application to melting points","volume":"1","author":"Sivaraman","year":"2020","journal-title":"Mach. Learn. Sci. Technol."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0072","doi-asserted-by":"crossref","first-page":"6253","DOI":"10.1021\/ie0497184","article-title":"A group-contribution method for predicting pure component properties of biochemical and safety interest","volume":"43","author":"Stefanis","year":"2004","journal-title":"Ind. Eng. Chem. Res."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0073","doi-asserted-by":"crossref","first-page":"568","DOI":"10.1007\/s10765-008-0415-z","article-title":"Prediction of hansen solubility parameters with a new group-contribution method","volume":"29","author":"Stefanis","year":"2008","journal-title":"Int. J. Thermophys."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0074","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1002\/aic.16678","article-title":"An architecture of deep learning in QSPR modeling for the prediction of critical properties using molecular signatures","volume":"65","author":"Su","year":"2019","journal-title":"AlChE J."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0075","first-page":"39","article-title":"Assessing graph-based deep learning models for predicting flash point","author":"Sun","year":"2020","journal-title":"Mol. Inform."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0076","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1186\/s13321-020-0414-z","article-title":"A self-attention based message passing neural network for predicting molecular lipophilicity and aqueous solubility","volume":"12","author":"Tang","year":"2020","journal-title":"J. Cheminform."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0077","doi-asserted-by":"crossref","unstructured":"Trinh, C., Meimaroglou, D., Lasala, S., Herbinet, O., 2022. Machine Learning for the prediction of the thermochemical properties (enthalpy and entropy of formation) of a molecule from its molecular descriptors. pp. 1471\u20131476.","DOI":"10.1016\/B978-0-323-95879-0.50246-0"},{"key":"10.1016\/j.compchemeng.2023.108291_bib0078","series-title":"Aviation Fuels","first-page":"113","article-title":"Impact of alternative fuels and properties on elastomer compatibility","author":"Undavalli","year":"2021"},{"key":"10.1016\/j.compchemeng.2023.108291_bib0079","unstructured":"US EPA, 2023. Estimation Programs Interface SuiteTM for Microsoft\u00ae Windows."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0080","doi-asserted-by":"crossref","first-page":"1764","DOI":"10.1039\/b809850f","article-title":"The calculation of thermodynamic properties of molecules","volume":"39","author":"Van Speybroeck","year":"2010","journal-title":"Chem. Soc. Rev."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0081","doi-asserted-by":"crossref","first-page":"3697","DOI":"10.1039\/D1SC05259D","article-title":"Model agnostic generation of counterfactual explanations for molecules","volume":"13","author":"Wellawatte","year":"2022","journal-title":"Chem. Sci."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0082","first-page":"68","article-title":"A systematic modeling methodology of deep neural network-based structure-property relationship for rapid and reliable prediction on flashpoints","author":"Wen","year":"2022","journal-title":"AlChE J."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0083","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ddtec.2020.11.009","article-title":"A compact review of molecular property prediction with graph neural networks","volume":"37","author":"Wieder","year":"2020","journal-title":"Drug Discov. Today Technol."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0084","doi-asserted-by":"crossref","first-page":"513","DOI":"10.1039\/C7SC02664A","article-title":"MoleculeNet: a benchmark for molecular machine learning","volume":"9","author":"Wu","year":"2018","journal-title":"Chem. Sci."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0085","doi-asserted-by":"crossref","first-page":"2660","DOI":"10.1021\/acs.molpharmaceut.0c00355","article-title":"Machine estimation of drug melting properties and influence on solubility prediction","volume":"17","author":"Wyttenbach","year":"2020","journal-title":"Mol. Pharm."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0086","doi-asserted-by":"crossref","first-page":"8749","DOI":"10.1021\/acs.jmedchem.9b00959","article-title":"Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism","volume":"63","author":"Xiong","year":"2020","journal-title":"J. Med. Chem."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0087","doi-asserted-by":"crossref","first-page":"4451","DOI":"10.1039\/D1GC00331C","article-title":"A multi-task deep learning neural network for predicting flammability-related properties from molecular structures","volume":"23","author":"Yang","year":"2021","journal-title":"Green Chem."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0088","doi-asserted-by":"crossref","first-page":"3370","DOI":"10.1021\/acs.jcim.9b00237","article-title":"Analyzing learned molecular representations for property prediction","volume":"59","author":"Yang","year":"2019","journal-title":"J. Chem. Inf. Model."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0089","doi-asserted-by":"crossref","first-page":"3531","DOI":"10.1021\/acs.iecr.8b05938","article-title":"Developing quantitative structure\u2013property relationship models to predict the upper flammability limit using machine learning","volume":"58","author":"Yuan","year":"2019","journal-title":"Ind. Eng. Chem. Res."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0090","first-page":"68","article-title":"An accurate and interpretable deep learning model for environmental properties prediction using hybrid molecular representations","author":"Zhang","year":"2022","journal-title":"AlChE J."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0091","doi-asserted-by":"crossref","first-page":"2981","DOI":"10.1093\/bioinformatics\/btab195","article-title":"FraGAT: a fragment-oriented multi-scale graph attention model for molecular property prediction","volume":"37","author":"Zhang","year":"2021","journal-title":"Bioinformatics"},{"key":"10.1016\/j.compchemeng.2023.108291_bib0092","doi-asserted-by":"crossref","first-page":"1701","DOI":"10.1016\/j.chemosphere.2008.09.033","article-title":"A new hybrid system of QSAR models for predicting bioconcentration factors (BCF)","volume":"73","author":"Zhao","year":"2008","journal-title":"Chemosphere"},{"key":"10.1016\/j.compchemeng.2023.108291_bib0093","series-title":"Proceedings of the 14th ACM International Conference on Web Search and Data Mining","first-page":"1141","article-title":"Scalable graph neural networks with deep graph library","author":"Zheng","year":"2021"},{"key":"10.1016\/j.compchemeng.2023.108291_bib0094","doi-asserted-by":"crossref","first-page":"3479","DOI":"10.1021\/acs.jpclett.2c00734","article-title":"Toward chemical accuracy in predicting enthalpies of formation with general-purpose data-driven methods","volume":"13","author":"Zheng","year":"2022","journal-title":"J. Phys. Chem. Lett."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0095","unstructured":"Zhou, J., Cui, G., Zhang, Z., Yang, C., Liu, Z., Wang, L., Li, C., Sun, M., 2018. Graph neural networks: a review of methods and applications 1\u201322."},{"key":"10.1016\/j.compchemeng.2023.108291_bib0096","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/j.ces.2018.03.005","article-title":"Prediction of acid dissociation constants of organic compounds using group contribution methods","volume":"183","author":"Zhou","year":"2018","journal-title":"Chem. Eng. Sci."}],"container-title":["Computers & Chemical Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0098135423001618?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0098135423001618?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T20:01:19Z","timestamp":1732046479000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0098135423001618"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,8]]},"references-count":96,"alternative-id":["S0098135423001618"],"URL":"https:\/\/doi.org\/10.1016\/j.compchemeng.2023.108291","relation":{},"ISSN":["0098-1354"],"issn-type":[{"type":"print","value":"0098-1354"}],"subject":[],"published":{"date-parts":[[2023,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Application of interpretable group-embedded graph neural networks for pure compound properties","name":"articletitle","label":"Article Title"},{"value":"Computers & Chemical Engineering","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compchemeng.2023.108291","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Authors. Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"108291"}}