{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T06:52:28Z","timestamp":1726469548249},"reference-count":30,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2017,11,1]],"date-time":"2017-11-01T00:00:00Z","timestamp":1509494400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"}],"content-domain":{"domain":["elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers & Chemical Engineering"],"published-print":{"date-parts":[[2017,11]]},"DOI":"10.1016\/j.compchemeng.2017.05.016","type":"journal-article","created":{"date-parts":[[2017,5,22]],"date-time":"2017-05-22T14:46:04Z","timestamp":1495464364000},"page":"57-70","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":19,"special_numbering":"C","title":["Comparison of stochastic fault detection and classification algorithms for nonlinear chemical processes"],"prefix":"10.1016","volume":"106","author":[{"given":"Yuncheng","family":"Du","sequence":"first","affiliation":[]},{"given":"Hector","family":"Budman","sequence":"additional","affiliation":[]},{"given":"Thomas A.","family":"Duever","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compchemeng.2017.05.016_bib0005","doi-asserted-by":"crossref","first-page":"1016","DOI":"10.1016\/j.conengprac.2012.05.008","article-title":"Fault detection and isolation nonlinear state space models using particle filters","volume":"20","author":"Alrowaie","year":"2012","journal-title":"Control Eng. Pract."},{"key":"10.1016\/j.compchemeng.2017.05.016_bib0010","series-title":"The 9th IFAC Symposium on Advanced Control of Chemical Process","article-title":"Revision of the Tennessee Eastman process model","author":"Bathelt","year":"2015"},{"year":"2001","author":"Chiang","series-title":"Fault Detection and Diagnosis in Industrial Systems","key":"10.1016\/j.compchemeng.2017.05.016_bib0015"},{"key":"10.1016\/j.compchemeng.2017.05.016_bib0020","doi-asserted-by":"crossref","first-page":"1389","DOI":"10.1016\/j.compchemeng.2003.10.002","article-title":"Fault diagnosis based on Fisher discriminant analysis and support vector machines","volume":"28","author":"Chiang","year":"2004","journal-title":"Comput. Chem. Eng."},{"issue":"3","key":"10.1016\/j.compchemeng.2017.05.016_bib0025","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1016\/0098-1354(93)80018-I","article-title":"A plant-wide industrial process control problem","volume":"17","author":"Downs","year":"1993","journal-title":"Comput. Chem. Eng."},{"issue":"5","key":"10.1016\/j.compchemeng.2017.05.016_bib0030","doi-asserted-by":"crossref","first-page":"1439","DOI":"10.1109\/JBHI.2015.2458791","article-title":"Statistical metamodeling and sequential design of computer experiments to model Glyco-altered gating of sodium channels in cardiac myocytes","volume":"20","author":"Du","year":"2016","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"10.1016\/j.compchemeng.2017.05.016_bib0035","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.jprocont.2015.12.007","article-title":"Integration of fault diagnosis and control based on a trade-off between fault detectability and closed loop performance","volume":"38","author":"Du","year":"2016","journal-title":"J. Process Control"},{"issue":"2","key":"10.1016\/j.compchemeng.2017.05.016_bib0040","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1002\/mats.201600095","article-title":"Parameter estimation for an inverse nonlinear stochastic problem: reactivity ratio studies in copolymerization","volume":"26","author":"Du","year":"2017","journal-title":"Macromol. Theory Simul."},{"key":"10.1016\/j.compchemeng.2017.05.016_bib0045","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1016\/j.compchemeng.2015.02.009","article-title":"Fault detection and diagnosis with parametric uncertainty using generalized polynomial chaos","volume":"76","author":"Du","year":"2015","journal-title":"Comput. Chem. Eng."},{"key":"10.1016\/j.compchemeng.2017.05.016_bib0050","series-title":"The 9th International Symposium on Advanced Control of Chemical Processes, the International Federation of Automatic Control","article-title":"Stochastic fault diagnosis using a generalized polynomial chaos model and maximum likelihood","author":"Du","year":"2015"},{"issue":"7","key":"10.1016\/j.compchemeng.2017.05.016_bib0055","doi-asserted-by":"crossref","first-page":"2069","DOI":"10.1021\/acs.iecr.5b04694","article-title":"Generalized polynomial chaos-based fault detection and classification for nonlinear dynamic processes","volume":"55","author":"Du","year":"2016","journal-title":"Ind. Eng. Chem. Res."},{"key":"10.1016\/j.compchemeng.2017.05.016_bib0060","doi-asserted-by":"crossref","first-page":"1591","DOI":"10.1016\/j.automatica.2013.02.045","article-title":"A method for quantitative fault diagnosability analysis of stochastic linear descriptor models","volume":"49","author":"Eriksson","year":"2013","journal-title":"Automatica"},{"year":"1998","author":"Gerlter","series-title":"Fault Detection and Diagnosis in Engineering Systems","key":"10.1016\/j.compchemeng.2017.05.016_bib0065"},{"year":"1991","author":"Ghanem","series-title":"Stochastic Finite Elements: A Spectral Approach","key":"10.1016\/j.compchemeng.2017.05.016_bib0070"},{"key":"10.1016\/j.compchemeng.2017.05.016_bib0075","series-title":"AIP Conference Proceedings","doi-asserted-by":"crossref","DOI":"10.1063\/1.3295638","article-title":"Introduction to Monte Carlo simulation","author":"Harrison","year":"2010"},{"key":"10.1016\/j.compchemeng.2017.05.016_bib0080","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/j.arcontrol.2004.12.002","article-title":"Model based fault detection and diagnosis \u2013 status and applications","volume":"29","author":"Isermann","year":"2005","journal-title":"Annu. Rev. Control"},{"year":"2006","author":"Isermann","series-title":"Fault Diagnosis Systems: An Introduction From Fault Detection to Fault Tolerance","key":"10.1016\/j.compchemeng.2017.05.016_bib0085"},{"key":"10.1016\/j.compchemeng.2017.05.016_bib0090","doi-asserted-by":"crossref","first-page":"345","DOI":"10.1023\/A:1012771025575","article-title":"A taxonomy of global optimization methods based on response surfaces","volume":"21","author":"Jones","year":"2001","journal-title":"J. Glob. Optim."},{"year":"1999","author":"Ljung","series-title":"System Identification \u2013 Theory for the User","key":"10.1016\/j.compchemeng.2017.05.016_bib0095"},{"year":"2013","author":"Montgomery","series-title":"Applied Statistics and Probability for Engineers","key":"10.1016\/j.compchemeng.2017.05.016_bib0100"},{"issue":"5","key":"10.1016\/j.compchemeng.2017.05.016_bib0105","doi-asserted-by":"crossref","first-page":"671","DOI":"10.1016\/S0967-0661(97)00049-X","article-title":"Observer-based fault detection and isolation: robustness and applications","volume":"5","author":"Patton","year":"1997","journal-title":"Control Eng. Pract."},{"year":"2010","author":"Patton","series-title":"Issues of Fault Diagnosis for Dynamic Systems","key":"10.1016\/j.compchemeng.2017.05.016_bib0110"},{"year":"2006","author":"Rasmussen","series-title":"Gaussian Processes for Machine Learning","key":"10.1016\/j.compchemeng.2017.05.016_bib0115"},{"year":"2010","author":"Seborg","series-title":"Process Dynamics and Control","key":"10.1016\/j.compchemeng.2017.05.016_bib0120"},{"year":"2011","author":"Shi","series-title":"Gaussian Process Regression Analysis for Functional Data","key":"10.1016\/j.compchemeng.2017.05.016_bib0125"},{"issue":"12","key":"10.1016\/j.compchemeng.2017.05.016_bib0130","doi-asserted-by":"crossref","first-page":"1630","DOI":"10.1016\/S0263-8762(07)73207-0","article-title":"State specific key variables for monitoring multi-state processes","volume":"85","author":"Srinivasan","year":"2007","journal-title":"Chem. Eng. Res. Des."},{"key":"10.1016\/j.compchemeng.2017.05.016_bib0135","doi-asserted-by":"crossref","first-page":"460","DOI":"10.1016\/j.sysconle.2010.06.005","article-title":"Cooperative distributed model predictive control","volume":"59","author":"Stewart","year":"2010","journal-title":"Syst. Control Lett."},{"key":"10.1016\/j.compchemeng.2017.05.016_bib0140","doi-asserted-by":"crossref","first-page":"1497","DOI":"10.1016\/j.jprocont.2013.09.017","article-title":"An adaptive multimode process monitoring strategy based on mode clustering and mode unfolding","volume":"23","author":"Tong","year":"2013","journal-title":"J. Process Control"},{"key":"10.1016\/j.compchemeng.2017.05.016_bib0145","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1016\/S0098-1354(02)00160-6","article-title":"A review of process fault detecion and diagnosis Part I: quantitative model-based methods","volume":"27","author":"Venkatasubramanian","year":"2003","journal-title":"Comput. Chem. Eng."},{"year":"2010","author":"Xiu","series-title":"Numerical Methods for Stochastic Computation: A Spectral Method Approach","key":"10.1016\/j.compchemeng.2017.05.016_bib0150"}],"container-title":["Computers & Chemical Engineering"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0098135417302156?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0098135417302156?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2019,12,6]],"date-time":"2019-12-06T08:27:29Z","timestamp":1575620849000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0098135417302156"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2017,11]]},"references-count":30,"alternative-id":["S0098135417302156"],"URL":"https:\/\/doi.org\/10.1016\/j.compchemeng.2017.05.016","relation":{},"ISSN":["0098-1354"],"issn-type":[{"type":"print","value":"0098-1354"}],"subject":[],"published":{"date-parts":[[2017,11]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Comparison of stochastic fault detection and classification algorithms for nonlinear chemical processes","name":"articletitle","label":"Article Title"},{"value":"Computers & Chemical Engineering","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compchemeng.2017.05.016","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2017 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}]}}