{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,10]],"date-time":"2024-12-10T02:10:11Z","timestamp":1733796611243,"version":"3.30.1"},"reference-count":47,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,12,1]],"date-time":"2024-12-01T00:00:00Z","timestamp":1733011200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2024,12]]},"DOI":"10.1016\/j.compbiomed.2024.109266","type":"journal-article","created":{"date-parts":[[2024,10,14]],"date-time":"2024-10-14T10:55:48Z","timestamp":1728903348000},"page":"109266","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Multi-modal classification of breast cancer lesions in Digital Mammography and contrast enhanced spectral mammography images"],"prefix":"10.1016","volume":"183","author":[{"ORCID":"https:\/\/orcid.org\/0009-0007-4435-5152","authenticated-orcid":false,"given":"Narjes","family":"Bouzarjomehri","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0009-0002-4227-3878","authenticated-orcid":false,"given":"Mohammad","family":"Barzegar","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5396-6517","authenticated-orcid":false,"given":"Habib","family":"Rostami","sequence":"additional","affiliation":[]},{"given":"Ahmad","family":"Keshavarz","sequence":"additional","affiliation":[]},{"given":"Ahmad Navid","family":"Asghari","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1027-4438","authenticated-orcid":false,"given":"Saeed Talatian","family":"Azad","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"4","key":"10.1016\/j.compbiomed.2024.109266_bib2","article-title":"Breast cancer risk factors in Iran: a systematic review & meta-analysis","volume":"41","author":"Shamshirian","year":"2020","journal-title":"Horm. Mol. Biol. Clin. Invest."},{"key":"10.1016\/j.compbiomed.2024.109266_bib4","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102147","article-title":"Deep adversarial domain adaptation for breast cancer screening from mammograms","volume":"73","author":"Wang","year":"2021","journal-title":"Med. Image Anal."},{"issue":"1","key":"10.1016\/j.compbiomed.2024.109266_bib5","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41597-022-01238-0","article-title":"Categorized contrast enhanced mammography dataset for diagnostic and artificial intelligence research","volume":"9","author":"Khaled","year":"2022","journal-title":"Sci. Data"},{"year":"2003","series-title":"Digital Mammography Image Analysis System Based on Mathematical Morphology","author":"Gaber","key":"10.1016\/j.compbiomed.2024.109266_bib6"},{"issue":"8","key":"10.1016\/j.compbiomed.2024.109266_bib7","doi-asserted-by":"crossref","first-page":"1384","DOI":"10.3390\/diagnostics11081384","article-title":"TransMed: transformers advance multi-modal medical image classification","volume":"11","author":"Dai","year":"2021","journal-title":"Diagnostics"},{"volume":"vol. 14","year":"2022","author":"He","key":"10.1016\/j.compbiomed.2024.109266_bib8"},{"key":"10.1016\/j.compbiomed.2024.109266_bib10","series-title":"ICLR 2021 - 9th International Conference on Learning Representations","article-title":"An image is worth 16x16 words: transformers for image recognition at scale","author":"Dosovitskiy","year":"2020"},{"issue":"7","key":"10.1016\/j.compbiomed.2024.109266_bib11","first-page":"3523","article-title":"Image segmentation using deep learning: a survey","volume":"44","author":"Minaee","year":"2022","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"2","key":"10.1016\/j.compbiomed.2024.109266_bib12","doi-asserted-by":"crossref","first-page":"348","DOI":"10.1016\/j.fcij.2018.10.005","article-title":"Benign and malignant breast cancer segmentation using optimized region growing technique","volume":"3","author":"Punitha","year":"2018","journal-title":"Future Comput. Info. J."},{"issue":"6","key":"10.1016\/j.compbiomed.2024.109266_bib14","doi-asserted-by":"crossref","DOI":"10.3390\/jcm8060891","article-title":"Fully automated support system for diagnosis of breast cancer in contrast-enhanced spectral mammography images","volume":"8","author":"Fanizzi","year":"2019","journal-title":"J. Clin. Med."},{"key":"10.1016\/j.compbiomed.2024.109266_bib15","doi-asserted-by":"crossref","DOI":"10.1016\/j.eclinm.2023.101913","article-title":"Deep learning-enabled fully automated pipeline system for segmentation and classification of single-mass breast lesions using contrast-enhanced mammography: a prospective, multicentre study","volume":"58","author":"Zheng","year":"2023","journal-title":"EClinicalMedicine"},{"key":"10.1016\/j.compbiomed.2024.109266_bib16","first-page":"5168","article-title":"RefineNet: multi-path refinement networks for high-resolution semantic segmentation","volume":"2017-January","author":"Lin","year":"2016"},{"key":"10.1016\/j.compbiomed.2024.109266_bib17","first-page":"1800","article-title":"Xception: deep learning with depthwise separable convolutions","volume":"2017-January","author":"Chollet","year":"2016"},{"key":"10.1016\/j.compbiomed.2024.109266_bib18","first-page":"6230","article-title":"Pyramid scene parsing network","volume":"2017-January","author":"Zhao","year":"2016"},{"issue":"6","key":"10.1016\/j.compbiomed.2024.109266_bib19","doi-asserted-by":"crossref","first-page":"1769","DOI":"10.2214\/ajr.174.6.1741769","article-title":"Breast imaging reporting and data system","volume":"174","author":"Berg","year":"2023","journal-title":"Am. J. Roentgenol."},{"issue":"1","key":"10.1016\/j.compbiomed.2024.109266_bib20","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-019-48995-4","article-title":"Deep learning to improve breast cancer detection on screening mammography","volume":"9","author":"Shen","year":"2019","journal-title":"Sci. Rep."},{"issue":"1","key":"10.1016\/j.compbiomed.2024.109266_bib22","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0262349","article-title":"Deep learning model for fully automated breast cancer detection system from thermograms","volume":"17","author":"Mohamed","year":"2022","journal-title":"PLoS One"},{"key":"10.1016\/j.compbiomed.2024.109266_bib23","doi-asserted-by":"crossref","first-page":"234","DOI":"10.1007\/978-3-319-24574-4_28","article-title":"U-net: convolutional networks for biomedical image segmentation","volume":"9351","author":"Ronneberger","year":"2015","journal-title":"Lect. Notes Comput. Sci."},{"author":"Miller","key":"10.1016\/j.compbiomed.2024.109266_bib24"},{"issue":"5","key":"10.1016\/j.compbiomed.2024.109266_bib25","doi-asserted-by":"crossref","first-page":"793","DOI":"10.1038\/s41416-022-02092-y","article-title":"Attention-based deep learning for breast lesions classification on contrast enhanced spectral mammography: a multicentre study","volume":"128","author":"Mao","year":"2022","journal-title":"Br. J. Cancer"},{"issue":"7","key":"10.1016\/j.compbiomed.2024.109266_bib26","doi-asserted-by":"crossref","first-page":"1549","DOI":"10.3390\/diagnostics12071549","article-title":"Transformers improve breast cancer diagnosis from unregistered multi-view mammograms","volume":"12","author":"Chen","year":"2022","journal-title":"Diagnostics"},{"key":"10.1016\/j.compbiomed.2024.109266_bib27","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2023.110393","article-title":"BTS-ST: Swin transformer network for segmentation and classification of multimodality breast cancer images","volume":"267","author":"Iqbal","year":"2023","journal-title":"Knowl. Base Syst."},{"issue":"17","key":"10.1016\/j.compbiomed.2024.109266_bib28","doi-asserted-by":"crossref","first-page":"8317","DOI":"10.1007\/s00500-022-07235-0","article-title":"Joint transformer and multi-scale CNN for DCE-MRI breast cancer segmentation","volume":"26","author":"Qin","year":"2022","journal-title":"Soft Comput."},{"key":"10.1016\/j.compbiomed.2024.109266_bib29","series-title":"Lesion Detection in Contrast Enhanced Spectral Mammography","first-page":"24","author":"Jailin","year":"2022"},{"key":"10.1016\/j.compbiomed.2024.109266_bib30","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2022.106210","article-title":"Multi-modality relation attention network for breast tumor classification","volume":"150","author":"Yang","year":"2022","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2024.109266_bib31","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1016\/j.neucom.2023.03.028","article-title":"Neural network model based on global and local features for multi-view mammogram classification","volume":"536","author":"Xia","year":"2023","journal-title":"Neurocomputing"},{"key":"10.1016\/j.compbiomed.2024.109266_bib32","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2022.108858","article-title":"Multi-feature deep information bottleneck network for breast cancer classification in contrast enhanced spectral mammography","volume":"131","author":"Song","year":"2022","journal-title":"Pattern Recogn."},{"issue":"12","key":"10.1016\/j.compbiomed.2024.109266_bib33","doi-asserted-by":"crossref","DOI":"10.3390\/diagnostics12123133","article-title":"Contextual features and information bottleneck-based multi-input network for breast cancer classification from contrast-enhanced spectral mammography","volume":"12","author":"Li","year":"2022","journal-title":"Diagnostics"},{"key":"10.1016\/j.compbiomed.2024.109266_bib34","doi-asserted-by":"crossref","DOI":"10.1038\/sdata.2017.177","article-title":"Data Descriptor: a curated mammography data set for use in computer-aided detection and diagnosis research","volume":"4","author":"Lee","year":"2017","journal-title":"Sci. Data"},{"issue":"4","key":"10.1016\/j.compbiomed.2024.109266_bib38","doi-asserted-by":"crossref","first-page":"684","DOI":"10.3390\/diagnostics11040684","article-title":"Radiomic feature reduction approach to predict breast cancer by contrast-enhanced spectral mammography images","volume":"11","author":"Massafra","year":"2021","journal-title":"Diagnostics"},{"key":"10.1016\/j.compbiomed.2024.109266_bib39","series-title":"ICLR 2021 - 9th International Conference on Learning Representations","article-title":"An image is worth 16x16 words: transformers for image recognition at scale","author":"Dosovitskiy","year":"2020"},{"key":"10.1016\/j.compbiomed.2024.109266_bib41","article-title":"PyTorch: an imperative style, high-performance deep learning library","volume":"32","author":"Paszke","year":"2019","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.compbiomed.2024.109266_bib42","first-page":"770","article-title":"Deep residual learning for image recognition","volume":"2016-December","author":"He","year":"2015"},{"key":"10.1016\/j.compbiomed.2024.109266_bib43","series-title":"Proceedings of the IEEE International Conference on Computer Vision","first-page":"9992","article-title":"Swin transformer: hierarchical vision transformer using shifted windows","author":"Liu","year":"2021"},{"issue":"6","key":"10.1016\/j.compbiomed.2024.109266_bib44","doi-asserted-by":"crossref","first-page":"891","DOI":"10.3390\/jcm8060891","article-title":"Fully automated support system for diagnosis of breast cancer in contrast-enhanced spectral mammography images","volume":"8","author":"Fanizzi","year":"2019","journal-title":"J. Clin. Med."},{"key":"10.1016\/j.compbiomed.2024.109266_bib45","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/j.compmedimag.2018.09.004","article-title":"SD-CNN: a shallow-deep CNN for improved breast cancer diagnosis","volume":"70","author":"Gao","year":"2018","journal-title":"Comput. Med. Imag. Graph."},{"issue":"2","key":"10.1016\/j.compbiomed.2024.109266_bib46","doi-asserted-by":"crossref","first-page":"236","DOI":"10.1016\/j.acra.2011.09.014","article-title":"INbreast: toward a full-field digital mammographic database","volume":"19","author":"Moreira","year":"2012","journal-title":"Acad. Radiol."},{"issue":"2","key":"10.1016\/j.compbiomed.2024.109266_bib47","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1007\/s11548-018-1876-6","article-title":"Classification of contrast-enhanced spectral mammography (CESM) images","volume":"14","author":"Perek","year":"2019","journal-title":"Int. J. Comput. Assist. Radiol. Surg."},{"issue":"9","key":"10.1016\/j.compbiomed.2024.109266_bib48","doi-asserted-by":"crossref","first-page":"1419","DOI":"10.1007\/s10439-018-2044-4","article-title":"Classification of breast masses using a computer-aided diagnosis scheme of contrast enhanced digital mammograms","volume":"46","author":"Danala","year":"2018","journal-title":"Ann. Biomed. Eng."},{"key":"10.1016\/j.compbiomed.2024.109266_bib49","doi-asserted-by":"crossref","first-page":"207","DOI":"10.1016\/j.ejrad.2017.11.024","article-title":"Computer-aided diagnosis of contrast-enhanced spectral mammography: a feasibility study","volume":"98","author":"Patel","year":"2018","journal-title":"Eur. J. Radiol."},{"issue":"12","key":"10.1016\/j.compbiomed.2024.109266_bib50","doi-asserted-by":"crossref","first-page":"6467","DOI":"10.1007\/s00521-023-09364-5","article-title":"YOLO-based CAD framework with ViT transformer for breast mass detection and classification in CESM and FFDM images","volume":"36","author":"Hassan","year":"2024","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.compbiomed.2024.109266_bib51","series-title":"ICLR 2021 - 9th International Conference on Learning Representations","article-title":"An image is worth 16x16 words: transformers for image recognition at scale","author":"Dosovitskiy","year":"2020"},{"key":"10.1016\/j.compbiomed.2024.109266_bib52","first-page":"11966","article-title":"A ConvNet for the 2020s","volume":"2022-June","author":"Liu","year":"2022"},{"key":"10.1016\/j.compbiomed.2024.109266_bib53","series-title":"3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings","article-title":"Very deep convolutional networks for large-scale image recognition","author":"Simonyan","year":"2014"},{"key":"10.1016\/j.compbiomed.2024.109266_bib54","first-page":"2818","article-title":"Rethinking the inception architecture for computer vision","volume":"2016-December","author":"Szegedy","year":"2015"},{"key":"10.1016\/j.compbiomed.2024.109266_bib55","doi-asserted-by":"crossref","DOI":"10.1155\/2020\/5894010","article-title":"A benign and malignant breast tumor classification method via efficiently combining texture and morphological features on Ultrasound images","volume":"2020","author":"Wei","year":"2020","journal-title":"Comput. Math. Methods Med."},{"issue":"1","key":"10.1016\/j.compbiomed.2024.109266_bib56","article-title":"Contrast-enhanced mammography: what the radiologist needs to know","volume":"3","author":"Neeter","year":"2021","journal-title":"BJR Open"}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482524013519?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482524013519?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,12,10]],"date-time":"2024-12-10T01:44:27Z","timestamp":1733795067000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482524013519"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,12]]},"references-count":47,"alternative-id":["S0010482524013519"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2024.109266","relation":{},"ISSN":["0010-4825"],"issn-type":[{"type":"print","value":"0010-4825"}],"subject":[],"published":{"date-parts":[[2024,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Multi-modal classification of breast cancer lesions in Digital Mammography and contrast enhanced spectral mammography images","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2024.109266","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"109266"}}