{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,16]],"date-time":"2025-02-16T03:40:13Z","timestamp":1739677213629,"version":"3.37.1"},"reference-count":67,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,10,1]],"date-time":"2024-10-01T00:00:00Z","timestamp":1727740800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2024,10]]},"DOI":"10.1016\/j.compbiomed.2024.109028","type":"journal-article","created":{"date-parts":[[2024,8,22]],"date-time":"2024-08-22T13:24:34Z","timestamp":1724333074000},"page":"109028","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":0,"special_numbering":"C","title":["Continual learning for seizure prediction via memory projection strategy"],"prefix":"10.1016","volume":"181","author":[{"given":"Yufei","family":"Shi","sequence":"first","affiliation":[]},{"given":"Shishi","family":"Tang","sequence":"additional","affiliation":[]},{"given":"Yuxuan","family":"Li","sequence":"additional","affiliation":[]},{"given":"Zhipeng","family":"He","sequence":"additional","affiliation":[]},{"given":"Shengsheng","family":"Tang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8714-0369","authenticated-orcid":false,"given":"Ruixuan","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Weishi","family":"Zheng","sequence":"additional","affiliation":[]},{"given":"Ziyi","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Yi","family":"Zhou","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"6","key":"10.1016\/j.compbiomed.2024.109028_b1","doi-asserted-by":"crossref","first-page":"603","DOI":"10.1016\/j.neurol.2021.10.005","article-title":"Perception of seizure severity and bothersome in refractory focal epilepsy","volume":"178","author":"Tedrus","year":"2022","journal-title":"Rev. Neurol."},{"issue":"5","key":"10.1016\/j.compbiomed.2024.109028_b2","doi-asserted-by":"crossref","first-page":"1401","DOI":"10.1109\/TBME.2012.2237399","article-title":"Predicting epileptic seizures in scalp EEG based on a variational Bayesian Gaussian mixture model of zero-crossing intervals","volume":"60","author":"Zandi","year":"2013","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"6","key":"10.1016\/j.compbiomed.2024.109028_b3","doi-asserted-by":"crossref","first-page":"880","DOI":"10.1109\/TNSRE.2013.2282153","article-title":"Seizure prediction using spike rate of intracranial EEG","volume":"21","author":"Li","year":"2013","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"issue":"10","key":"10.1016\/j.compbiomed.2024.109028_b4","doi-asserted-by":"crossref","first-page":"160","DOI":"10.1007\/s10916-017-0800-x","article-title":"Classification of focal and non focal epileptic seizures using multi-features and SVM classifier","volume":"41","author":"Sriraam","year":"2017","journal-title":"J. Med. Syst."},{"issue":"19","key":"10.1016\/j.compbiomed.2024.109028_b5","doi-asserted-by":"crossref","DOI":"10.1097\/MD.0000000000006879","article-title":"Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification","volume":"96","author":"Wen","year":"2017","journal-title":"Medicine"},{"key":"10.1016\/j.compbiomed.2024.109028_b6","series-title":"2016 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology","first-page":"1","article-title":"Epileptic seizure prediction using zero-crossings analysis of EEG wavelet detail coefficients","author":"Elgohary","year":"2016"},{"key":"10.1016\/j.compbiomed.2024.109028_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.chaos.2021.110796","article-title":"Predicting seizure onset based on time-frequency analysis of EEG signals","volume":"145","author":"Tamanna","year":"2021","journal-title":"Chaos, Solitons & Fractals"},{"issue":"10","key":"10.1016\/j.compbiomed.2024.109028_b8","doi-asserted-by":"crossref","first-page":"1959","DOI":"10.1016\/j.clinph.2014.02.017","article-title":"Construction of rules for seizure prediction based on approximate entropy","volume":"125","author":"Zhang","year":"2014","journal-title":"Clin. Neurophysiol."},{"key":"10.1016\/j.compbiomed.2024.109028_b9","doi-asserted-by":"crossref","first-page":"290","DOI":"10.1016\/j.neucom.2017.04.019","article-title":"Chaos feature study in fractional Fourier domain for preictal prediction of epileptic seizure","volume":"249","author":"Fei","year":"2017","journal-title":"Neurocomputing"},{"issue":"10","key":"10.1016\/j.compbiomed.2024.109028_b10","doi-asserted-by":"crossref","first-page":"5122","DOI":"10.1109\/TNNLS.2018.2791644","article-title":"Permutation Jaccard distance-based hierarchical clustering to estimate EEG network density modifications in MCI subjects","volume":"29","author":"Mammone","year":"2018","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"2","key":"10.1016\/j.compbiomed.2024.109028_b11","doi-asserted-by":"crossref","first-page":"535","DOI":"10.1109\/TNNLS.2020.3010780","article-title":"Deep representation-based domain adaptation for nonstationary EEG classification","volume":"32","author":"Zhao","year":"2020","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"8","key":"10.1016\/j.compbiomed.2024.109028_b12","doi-asserted-by":"crossref","first-page":"3587","DOI":"10.1109\/TNNLS.2021.3053576","article-title":"Improving EEG decoding via clustering-based multitask feature learning","volume":"33","author":"Zhang","year":"2021","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.compbiomed.2024.109028_b13","series-title":"2015 IEEE International Conference on Digital Signal Processing","first-page":"177","article-title":"A seizure prediction method based on efficient features and BLDA","author":"Yuan","year":"2015"},{"key":"10.1016\/j.compbiomed.2024.109028_b14","first-page":"1","article-title":"Learning EEG synchronization patterns for epileptic seizure prediction using bag-of-wave features","author":"Cui","year":"2018","journal-title":"J. Ambient Intell. Humaniz. Comput."},{"key":"10.1016\/j.compbiomed.2024.109028_b15","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2023.106888","article-title":"An attention-based deep convolutional neural network for ultra-sparse-view CT reconstruction","volume":"161","author":"Chan","year":"2023","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2024.109028_b16","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2023.107161","article-title":"CAIR: Combining integrated attention with iterative optimization learning for sparse-view CT reconstruction","volume":"163","author":"Cheng","year":"2023","journal-title":"Comput. Biol. Med."},{"issue":"2","key":"10.1016\/j.compbiomed.2024.109028_b17","doi-asserted-by":"crossref","first-page":"612","DOI":"10.1007\/s42235-022-00280-3","article-title":"sEMG-based lower limb motion prediction using CNN-LSTM with improved PCA optimization algorithm","volume":"20","author":"Zhu","year":"2023","journal-title":"J. Bionic Eng."},{"key":"10.1016\/j.compbiomed.2024.109028_b18","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2023.107410","article-title":"An optimized machine learning model for predicting hospitalization for COVID-19 infection in the maintenance dialysis population","volume":"165","author":"Bu","year":"2023","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2024.109028_b19","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2022.106420","article-title":"MI-DABAN: A dual-attention-based adversarial network for motor imagery classification","volume":"152","author":"Li","year":"2023","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2024.109028_b20","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1016\/j.neucom.2020.07.008","article-title":"Projective parameter transfer based sparse multiple empirical kernel learning machine for diagnosis of brain disease","volume":"413","author":"Fei","year":"2020","journal-title":"Neurocomputing"},{"issue":"4","key":"10.1016\/j.compbiomed.2024.109028_b21","doi-asserted-by":"crossref","first-page":"5279","DOI":"10.1007\/s11227-023-05655-9","article-title":"Research of spatial context convolutional neural networks for early diagnosis of Alzheimer\u2019s disease","volume":"80","author":"Tong","year":"2024","journal-title":"J. Supercomput."},{"key":"10.1016\/j.compbiomed.2024.109028_b22","doi-asserted-by":"crossref","first-page":"451","DOI":"10.1016\/j.neunet.2023.06.005","article-title":"MI-CAT: A transformer-based domain adaptation network for motor imagery classification","volume":"165","author":"Zhang","year":"2023","journal-title":"Neural Netw."},{"key":"10.1016\/j.compbiomed.2024.109028_b23","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1016\/j.neunet.2023.08.008","article-title":"MI-DAGSC: A domain adaptation approach incorporating comprehensive information from MI-EEG signals","volume":"167","author":"Zhang","year":"2023","journal-title":"Neural Netw."},{"key":"10.1016\/j.compbiomed.2024.109028_b24","doi-asserted-by":"crossref","DOI":"10.1016\/j.jneumeth.2019.108395","article-title":"Early prediction of epileptic seizures using a long-term recurrent convolutional network","volume":"327","author":"Wei","year":"2019","journal-title":"J. Neurosci. Methods"},{"issue":"6","key":"10.1016\/j.compbiomed.2024.109028_b25","doi-asserted-by":"crossref","first-page":"7759","DOI":"10.1007\/s11042-022-11915-2","article-title":"Apple leaf disease recognition method with improved residual network","volume":"81","author":"Yu","year":"2022","journal-title":"Multimedia Tools Appl."},{"key":"10.1016\/j.compbiomed.2024.109028_b26","doi-asserted-by":"crossref","first-page":"623","DOI":"10.1016\/j.neucom.2021.08.030","article-title":"Category-consistent deep network learning for accurate vehicle logo recognition","volume":"463","author":"Lu","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.compbiomed.2024.109028_b27","doi-asserted-by":"crossref","first-page":"39998","DOI":"10.1109\/ACCESS.2020.2976866","article-title":"Epileptic seizures prediction using deep learning techniques","volume":"8","author":"Usman","year":"2020","journal-title":"IEEE Access"},{"issue":"4","key":"10.1016\/j.compbiomed.2024.109028_b28","doi-asserted-by":"crossref","first-page":"609","DOI":"10.1109\/TBCAS.2022.3185584","article-title":"Seizure detection and prediction by parallel memristive convolutional neural networks","volume":"16","author":"Li","year":"2022","journal-title":"IEEE Trans. Biomed. Circ. Syst."},{"issue":"11","key":"10.1016\/j.compbiomed.2024.109028_b29","doi-asserted-by":"crossref","DOI":"10.1142\/S0129065722500502","article-title":"Automatic seizure identification from EEG signals based on brain connectivity learning","volume":"32","author":"Zhao","year":"2022","journal-title":"Int. J. Neural Syst."},{"key":"10.1016\/j.compbiomed.2024.109028_b30","article-title":"Dynamic learning framework for epileptic seizure prediction using sparsity based EEG Reconstruction with Optimized CNN classifier","volume":"170","author":"Prathaban","year":"2021","journal-title":"Expert Syst. Appl."},{"issue":"5","key":"10.1016\/j.compbiomed.2024.109028_b31","first-page":"71","article-title":"Automatic seizure detection using three-dimensional CNN based on multi-channel EEG","volume":"18","author":"Wei","year":"2018","journal-title":"BMC Med. Inform. Decis. Mak."},{"issue":"2","key":"10.1016\/j.compbiomed.2024.109028_b32","doi-asserted-by":"crossref","first-page":"900","DOI":"10.1109\/JBHI.2022.3221211","article-title":"A spatiotemporal graph attention network based on synchronization for epileptic seizure prediction","volume":"27","author":"Wang","year":"2022","journal-title":"IEEE J. Biomed. Health Inform."},{"issue":"2","key":"10.1016\/j.compbiomed.2024.109028_b33","doi-asserted-by":"crossref","first-page":"832","DOI":"10.1109\/TCDS.2022.3189701","article-title":"Multimodal self-paced locality-preserving learning for diagnosis of Alzheimer\u2019s disease","volume":"15","author":"Hao","year":"2022","journal-title":"IEEE Trans. Cogn. Dev. Syst."},{"key":"10.1016\/j.compbiomed.2024.109028_b34","doi-asserted-by":"crossref","first-page":"1321","DOI":"10.1109\/TNSRE.2023.3244045","article-title":"Exploring the applicability of transfer learning and feature engineering in epilepsy prediction using hybrid transformer model","volume":"31","author":"Hu","year":"2023","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"issue":"3","key":"10.1016\/j.compbiomed.2024.109028_b35","doi-asserted-by":"crossref","first-page":"755","DOI":"10.1049\/cit2.12261","article-title":"D2PAM: Epileptic seizures prediction using adversarial deep dual patch attention mechanism","volume":"8","author":"Khan","year":"2023","journal-title":"CAAI Trans. Intell. Technol."},{"key":"10.1016\/j.compbiomed.2024.109028_b36","doi-asserted-by":"crossref","first-page":"3915","DOI":"10.1109\/TNSRE.2023.3322275","article-title":"CLEP: Contrastive Learning for Epileptic Seizure Prediction Using a Spatio-Temporal-Spectral Network","volume":"31","author":"Guo","year":"2023","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"issue":"6","key":"10.1016\/j.compbiomed.2024.109028_b37","doi-asserted-by":"crossref","first-page":"e279","DOI":"10.1016\/S2589-7500(20)30102-3","article-title":"Clinical applications of continual learning machine learning","volume":"2","author":"Lee","year":"2020","journal-title":"Lancet Digit. Health"},{"issue":"07","key":"10.1016\/j.compbiomed.2024.109028_b38","doi-asserted-by":"crossref","DOI":"10.1142\/S0129065722500320","article-title":"Epileptic seizure prediction using deep neural networks via transfer learning and multi-feature fusion","volume":"32","author":"Yu","year":"2022","journal-title":"Int. J. Neural Syst."},{"issue":"7","key":"10.1016\/j.compbiomed.2024.109028_b39","first-page":"3366","article-title":"A continual learning survey: Defying forgetting in classification tasks","volume":"44","author":"De Lange","year":"2021","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"5","key":"10.1016\/j.compbiomed.2024.109028_b40","doi-asserted-by":"crossref","first-page":"1925","DOI":"10.1109\/TNNLS.2021.3111019","article-title":"Triple-memory networks: A brain-inspired method for continual learning","volume":"33","author":"Wang","year":"2021","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"10","key":"10.1016\/j.compbiomed.2024.109028_b41","doi-asserted-by":"crossref","first-page":"4267","DOI":"10.1109\/TNNLS.2019.2953622","article-title":"Continual learning of recurrent neural networks by locally aligning distributed representations","volume":"31","author":"Ororbia","year":"2020","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"1","key":"10.1016\/j.compbiomed.2024.109028_b42","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1007\/s44267-023-00005-y","article-title":"Continual learning with Bayesian model based on a fixed pre-trained feature extractor","volume":"1","author":"Yang","year":"2023","journal-title":"Vis. Intell."},{"issue":"12","key":"10.1016\/j.compbiomed.2024.109028_b43","doi-asserted-by":"crossref","first-page":"2935","DOI":"10.1109\/TPAMI.2017.2773081","article-title":"Learning without forgetting","volume":"40","author":"Li","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"doi-asserted-by":"crossref","unstructured":"J. Zhang, J. Zhang, S. Ghosh, D. Li, S. Tasci, L. Heck, H. Zhang, C.-C.J. Kuo, Class-incremental learning via deep model consolidation, in: Proceedings of the IEEE\/CVF Winter Conference on Applications of Computer Vision, 2020, pp. 1131\u20131140.","key":"10.1016\/j.compbiomed.2024.109028_b44","DOI":"10.1109\/WACV45572.2020.9093365"},{"doi-asserted-by":"crossref","unstructured":"O. Ostapenko, M. Puscas, T. Klein, P. Jahnichen, M. Nabi, Learning to remember: A synaptic plasticity driven framework for continual learning, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 11321\u201311329.","key":"10.1016\/j.compbiomed.2024.109028_b45","DOI":"10.1109\/CVPR.2019.01158"},{"doi-asserted-by":"crossref","unstructured":"S. Hou, X. Pan, C.C. Loy, Z. Wang, D. Lin, Learning a unified classifier incrementally via rebalancing, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 831\u2013839.","key":"10.1016\/j.compbiomed.2024.109028_b46","DOI":"10.1109\/CVPR.2019.00092"},{"year":"2022","author":"Wang","series-title":"Memory replay with data compression for continual learning","key":"10.1016\/j.compbiomed.2024.109028_b47"},{"key":"10.1016\/j.compbiomed.2024.109028_b48","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2023.107412","article-title":"Rethinking exemplars for continual semantic segmentation in endoscopy scenes: Entropy-based mini-batch pseudo-replay","volume":"165","author":"Wang","year":"2023","journal-title":"Comput. Biol. Med.","ISSN":"https:\/\/id.crossref.org\/issn\/0010-4825","issn-type":"print"},{"year":"2020","author":"Lee","series-title":"A neural dirichlet process mixture model for task-free continual learning","key":"10.1016\/j.compbiomed.2024.109028_b49"},{"key":"10.1016\/j.compbiomed.2024.109028_b50","series-title":"International Conference on Machine Learning","first-page":"4548","article-title":"Overcoming catastrophic forgetting with hard attention to the task","author":"Serra","year":"2018"},{"doi-asserted-by":"crossref","unstructured":"Y. Shi, L. Yuan, Y. Chen, J. Feng, Continual learning via bit-level information preserving, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 16674\u201316683.","key":"10.1016\/j.compbiomed.2024.109028_b51","DOI":"10.1109\/CVPR46437.2021.01640"},{"key":"10.1016\/j.compbiomed.2024.109028_b52","series-title":"Medical Image Computing and Computer Assisted Intervention\u2013MICCAI 2020: 23rd International Conference, Lima, Peru, October 4\u20138, 2020, Proceedings, Part I 23","first-page":"169","article-title":"Continual learning of new diseases with dual distillation and ensemble strategy","author":"Li","year":"2020"},{"key":"10.1016\/j.compbiomed.2024.109028_b53","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2021.104435","article-title":"An incremental learning approach to automatically recognize pulmonary diseases from the multi-vendor chest radiographs","volume":"134","author":"Sirshar","year":"2021","journal-title":"Comput. Biol. Med.","ISSN":"https:\/\/id.crossref.org\/issn\/0010-4825","issn-type":"print"},{"key":"10.1016\/j.compbiomed.2024.109028_b54","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2024.106087","article-title":"Continual learning for cuffless blood pressure estimation","volume":"92","author":"Zhang","year":"2024","journal-title":"Biomed. Signal Process. Control"},{"issue":"1","key":"10.1016\/j.compbiomed.2024.109028_b55","doi-asserted-by":"crossref","first-page":"5678","DOI":"10.1038\/s41467-021-25858-z","article-title":"Dynamic memory to alleviate catastrophic forgetting in continual learning with medical imaging","volume":"12","author":"Perkonigg","year":"2021","journal-title":"Nat. Commun."},{"key":"10.1016\/j.compbiomed.2024.109028_b56","article-title":"Centroid-guided domain incremental learning for EEG-Based seizure prediction","author":"Deng","year":"2023","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.compbiomed.2024.109028_b57","first-page":"9900","article-title":"Continual learning in low-rank orthogonal subspaces","volume":"33","author":"Chaudhry","year":"2020","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.compbiomed.2024.109028_b58","article-title":"GopGAN: Gradients orthogonal projection generative adversarial network with continual learning","author":"Li","year":"2021","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"1","key":"10.1016\/j.compbiomed.2024.109028_b59","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1007\/s10589-022-00409-4","article-title":"Hybrid limited memory gradient projection methods for box-constrained optimization problems","volume":"84","author":"Crisci","year":"2023","journal-title":"Comput. Optim. Appl."},{"year":"2022","author":"Lin","series-title":"TRGP: Trust region gradient projection for continual learning","key":"10.1016\/j.compbiomed.2024.109028_b60"},{"year":"2018","author":"Van de Ven","series-title":"Generative replay with feedback connections as a general strategy for continual learning","key":"10.1016\/j.compbiomed.2024.109028_b61"},{"issue":"10","key":"10.1016\/j.compbiomed.2024.109028_b62","doi-asserted-by":"crossref","first-page":"1028","DOI":"10.3390\/jpm11101028","article-title":"Automated epileptic seizure detection in pediatric subjects of CHB-MIT EEG database\u2014a survey","volume":"11","author":"Prasanna","year":"2021","journal-title":"J. Pers. Med."},{"issue":"3\u20134","key":"10.1016\/j.compbiomed.2024.109028_b63","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1016\/j.physd.2004.02.013","article-title":"Comparison of three nonlinear seizure prediction methods by means of the seizure prediction characteristic","volume":"194","author":"Maiwald","year":"2004","journal-title":"Physica D"},{"key":"10.1016\/j.compbiomed.2024.109028_b64","article-title":"A comprehensive survey of continual learning: Theory, method and application","author":"Wang","year":"2024","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.compbiomed.2024.109028_b65","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1007\/s13755-023-00239-6","article-title":"Combining temporal and spatial attention for seizure prediction","volume":"11","author":"Wang","year":"2023","journal-title":"Health Inf. Sci. Syst."},{"key":"10.1016\/j.compbiomed.2024.109028_b66","article-title":"Experience replay for continual learning","volume":"32","author":"Rolnick","year":"2019","journal-title":"Adv. Neural Inf. Process. Syst."},{"year":"2015","author":"Hinton","series-title":"Distilling the knowledge in a neural network","key":"10.1016\/j.compbiomed.2024.109028_b67"}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482524011132?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482524011132?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2025,2,16]],"date-time":"2025-02-16T03:05:48Z","timestamp":1739675148000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482524011132"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,10]]},"references-count":67,"alternative-id":["S0010482524011132"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2024.109028","relation":{},"ISSN":["0010-4825"],"issn-type":[{"type":"print","value":"0010-4825"}],"subject":[],"published":{"date-parts":[[2024,10]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Continual learning for seizure prediction via memory projection strategy","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2024.109028","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"109028"}}