{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T20:10:34Z","timestamp":1728245434351},"reference-count":62,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T00:00:00Z","timestamp":1722470400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2024,8]]},"DOI":"10.1016\/j.compbiomed.2024.108788","type":"journal-article","created":{"date-parts":[[2024,6,27]],"date-time":"2024-06-27T13:45:07Z","timestamp":1719495907000},"page":"108788","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["HiRENet: Novel convolutional neural network architecture using Hilbert-transformed and raw electroencephalogram (EEG) for subject-independent emotion classification"],"prefix":"10.1016","volume":"178","author":[{"given":"Minsu","family":"Kim","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3795-3318","authenticated-orcid":false,"given":"Chang-Hwan","family":"Im","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.compbiomed.2024.108788_bib1","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2552\/aaf12e","article-title":"A comprehensive review of EEG-based brain\u2013computer interface paradigms","volume":"16","author":"Abiri","year":"2019","journal-title":"J. Neural. Eng."},{"key":"10.1016\/j.compbiomed.2024.108788_bib2","doi-asserted-by":"crossref","DOI":"10.3389\/fnsys.2021.578875","article-title":"Progress in brain computer interface: challenges and opportunities","volume":"15","author":"Saha","year":"2021","journal-title":"Front. Syst. Neurosci."},{"key":"10.1016\/j.compbiomed.2024.108788_bib3","doi-asserted-by":"crossref","first-page":"94","DOI":"10.1016\/j.neucom.2013.06.046","article-title":"Emotional state classification from EEG data using machine learning approach","volume":"129","author":"Wang","year":"2014","journal-title":"Neurocomputing"},{"key":"10.1016\/j.compbiomed.2024.108788_bib4","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1007\/s13246-015-0333-x","article-title":"Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques","volume":"38","author":"Amin","year":"2015","journal-title":"Australas. Phys. Eng. Sci. Med."},{"issue":"2\u20133","key":"10.1016\/j.compbiomed.2024.108788_bib5","doi-asserted-by":"crossref","first-page":"314","DOI":"10.1016\/j.schres.2016.05.007","article-title":"Machine-learning-based diagnosis of schizophrenia using combined sensor-level and source-level EEG features","volume":"176","author":"Shim","year":"2016","journal-title":"Schizophr. Res."},{"issue":"1","key":"10.1016\/j.compbiomed.2024.108788_bib6","doi-asserted-by":"crossref","first-page":"170","DOI":"10.1186\/s13195-022-01115-3","article-title":"Selection of the optimal channel configuration for implementing wearable EEG devices for the diagnosis of mild cognitive impairment","volume":"14","author":"Lee","year":"2022","journal-title":"Alzheimer's Res. Ther."},{"key":"10.1016\/j.compbiomed.2024.108788_bib7","doi-asserted-by":"crossref","first-page":"204","DOI":"10.1109\/RBME.2020.2969915","article-title":"A review on machine learning for EEG signal processing in bioengineering","volume":"14","author":"Hosseini","year":"2020","journal-title":"IEEE Reviews in Biomedical Engineering"},{"issue":"2","key":"10.1016\/j.compbiomed.2024.108788_bib8","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2552\/aaf3f6","article-title":"Inter-subject transfer learning with an end-to-end deep convolutional neural network for EEG-based BCI","volume":"16","author":"Fahimi","year":"2019","journal-title":"J. Neural. Eng."},{"key":"10.1016\/j.compbiomed.2024.108788_bib9","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.117574","article-title":"Novel Signal-to-Signal translation method based on StarGAN to generate artificial EEG for SSVEP-based brain-computer interfaces","volume":"203","author":"Kwon","year":"2022","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.compbiomed.2024.108788_bib10","doi-asserted-by":"crossref","first-page":"44317","DOI":"10.1109\/ACCESS.2019.2908285","article-title":"Accurate EEG-based emotion recognition on combined features using deep convolutional neural networks","volume":"7","author":"Chen","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.compbiomed.2024.108788_bib11","doi-asserted-by":"crossref","first-page":"95","DOI":"10.3389\/fninf.2018.00095","article-title":"Epileptic seizure detection based on EEG signals and CNN","volume":"12","author":"Zhou","year":"2018","journal-title":"Front. Neuroinf."},{"key":"10.1016\/j.compbiomed.2024.108788_bib12","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.119032","article-title":"LSTM-CNN model of drowsiness detection from multiple consciousness states acquired by EEG","volume":"213","author":"Lee","year":"2023","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.compbiomed.2024.108788_bib13","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1016\/j.neunet.2019.02.005","article-title":"Early Alzheimer's disease diagnosis based on EEG spectral images using deep learning","volume":"114","author":"Bi","year":"2019","journal-title":"Neural Network."},{"key":"10.1016\/j.compbiomed.2024.108788_bib14","doi-asserted-by":"crossref","DOI":"10.1016\/j.jneumeth.2020.108885","article-title":"Data augmentation for deep-learning-based electroencephalography","volume":"346","author":"Lashgari","year":"2020","journal-title":"J. Neurosci. Methods"},{"key":"10.1016\/j.compbiomed.2024.108788_bib15","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.neucom.2020.09.017","article-title":"A review on transfer learning in EEG signal analysis","volume":"421","author":"Wan","year":"2021","journal-title":"Neurocomputing"},{"issue":"2","key":"10.1016\/j.compbiomed.2024.108788_bib16","article-title":"Automatic detection of schizophrenia by applying deep learning over spectrogram images of EEG signals","volume":"37","author":"Aslan","year":"2020","journal-title":"Trait. Du. Signal"},{"key":"10.1016\/j.compbiomed.2024.108788_bib17","doi-asserted-by":"crossref","first-page":"857","DOI":"10.1016\/j.procs.2020.04.093","article-title":"Emotion recognition in valence-arousal space from multi-channel EEG data and wavelet based deep learning framework","volume":"171","author":"Garg","year":"2020","journal-title":"Procedia Comput. Sci."},{"issue":"3","key":"10.1016\/j.compbiomed.2024.108788_bib18","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2552\/ab0ab5","article-title":"Deep learning for electroencephalogram (EEG) classification tasks: a review","volume":"16","author":"Craik","year":"2019","journal-title":"J. Neural. Eng."},{"key":"10.1016\/j.compbiomed.2024.108788_bib19","article-title":"Learning representations from EEG with deep recurrent-convolutional neural networks","author":"Bashivan","year":"2015","journal-title":"arXiv preprint arXiv:1511.06448"},{"issue":"1","key":"10.1016\/j.compbiomed.2024.108788_bib20","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1109\/TNSRE.2018.2884641","article-title":"Learning spatial\u2013spectral\u2013temporal EEG features with recurrent 3D convolutional neural networks for cross-task mental workload assessment","volume":"27","author":"Zhang","year":"2018","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"key":"10.1016\/j.compbiomed.2024.108788_bib21","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","article-title":"Shufflenet: an extremely efficient convolutional neural network for mobile devices","author":"Zhang","year":"2018"},{"key":"10.1016\/j.compbiomed.2024.108788_bib22","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1016\/j.neunet.2020.01.027","article-title":"A deep CNN approach to decode motor preparation of upper limbs from time\u2013frequency maps of EEG signals at source level","volume":"124","author":"Mammone","year":"2020","journal-title":"Neural Network."},{"key":"10.1016\/j.compbiomed.2024.108788_bib23","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2023.105130","article-title":"Classification of EEG signals using Transformer based deep learning and ensemble models","volume":"86","author":"Zeynali","year":"2023","journal-title":"Biomed. Signal Process Control"},{"issue":"11","key":"10.1016\/j.compbiomed.2024.108788_bib24","doi-asserted-by":"crossref","first-page":"5391","DOI":"10.1002\/hbm.23730","article-title":"Deep learning with convolutional neural networks for EEG decoding and visualization","volume":"38","author":"Schirrmeister","year":"2017","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.compbiomed.2024.108788_bib25","series-title":"2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence)","article-title":"Filter bank common spatial pattern (FBCSP) in brain-computer interface","author":"Ang","year":"2008"},{"key":"10.1016\/j.compbiomed.2024.108788_bib26","series-title":"2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society","article-title":"Multi-class filter bank common spatial pattern for four-class motor imagery BCI","author":"Chin","year":"2009"},{"issue":"5","key":"10.1016\/j.compbiomed.2024.108788_bib27","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2552\/aace8c","article-title":"EEGNet: a compact convolutional neural network for EEG-based brain\u2013computer interfaces","volume":"15","author":"Lawhern","year":"2018","journal-title":"J. Neural. Eng."},{"key":"10.1016\/j.compbiomed.2024.108788_bib28","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","article-title":"Going deeper with convolutions","author":"Szegedy","year":"2015"},{"issue":"3","key":"10.1016\/j.compbiomed.2024.108788_bib29","doi-asserted-by":"crossref","first-page":"2238","DOI":"10.1109\/TAFFC.2022.3169001","article-title":"Tsception: capturing temporal dynamics and spatial asymmetry from eeg for emotion recognition","volume":"14","author":"Ding","year":"2022","journal-title":"IEEE Trans. Affect. Comput."},{"key":"10.1016\/j.compbiomed.2024.108788_bib30","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1007\/s11517-017-1685-z","article-title":"A machine learning framework involving EEG-based functional connectivity to diagnose major depressive disorder (MDD)","volume":"56","author":"Mumtaz","year":"2018","journal-title":"Med. Biol. Eng. Comput."},{"issue":"4","key":"10.1016\/j.compbiomed.2024.108788_bib31","doi-asserted-by":"crossref","first-page":"722","DOI":"10.1109\/TAFFC.2018.2840973","article-title":"A mutual information based adaptive windowing of informative EEG for emotion recognition","volume":"11","author":"Piho","year":"2018","journal-title":"IEEE Transactions on Affective Computing"},{"issue":"5","key":"10.1016\/j.compbiomed.2024.108788_bib32","doi-asserted-by":"crossref","first-page":"1571","DOI":"10.1109\/TMI.2019.2953584","article-title":"Imaging of nonlinear and dynamic functional brain connectivity based on EEG recordings with the application on the diagnosis of Alzheimer's disease","volume":"39","author":"Zhao","year":"2019","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.compbiomed.2024.108788_bib33","series-title":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","article-title":"Convolutional neural network approach for EEG-based emotion recognition using brain connectivity and its spatial information","author":"Moon","year":"2018"},{"key":"10.1016\/j.compbiomed.2024.108788_bib34","doi-asserted-by":"crossref","first-page":"93711","DOI":"10.1109\/ACCESS.2019.2927768","article-title":"Phase-locking value based graph convolutional neural networks for emotion recognition","volume":"7","author":"Wang","year":"2019","journal-title":"IEEE Access"},{"issue":"3","key":"10.1016\/j.compbiomed.2024.108788_bib35","doi-asserted-by":"crossref","first-page":"532","DOI":"10.1109\/TAFFC.2018.2817622","article-title":"EEG emotion recognition using dynamical graph convolutional neural networks","volume":"11","author":"Song","year":"2018","journal-title":"IEEE Transactions on Affective Computing"},{"key":"10.1016\/j.compbiomed.2024.108788_bib36","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","article-title":"Deep residual learning for image recognition","author":"He","year":"2016"},{"key":"10.1016\/j.compbiomed.2024.108788_bib37","series-title":"International Conference on Machine Learning","article-title":"Batch normalization: accelerating deep network training by reducing internal covariate shift","author":"Ioffe","year":"2015"},{"key":"10.1016\/j.compbiomed.2024.108788_bib38","article-title":"How does batch normalization help optimization?","volume":"31","author":"Santurkar","year":"2018","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.compbiomed.2024.108788_bib39","article-title":"Residual networks behave like ensembles of relatively shallow networks","volume":"29","author":"Veit","year":"2016","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"4","key":"10.1016\/j.compbiomed.2024.108788_bib40","doi-asserted-by":"crossref","first-page":"1783","DOI":"10.1109\/TAFFC.2022.3206222","article-title":"Modulation of driver's emotional states by manipulating in-vehicle environment: validation with biosignals recorded in an actual car environment","volume":"13","author":"Kim","year":"2022","journal-title":"IEEE Transactions on Affective Computing"},{"issue":"4","key":"10.1016\/j.compbiomed.2024.108788_bib41","doi-asserted-by":"crossref","first-page":"396","DOI":"10.9734\/BJAST\/2015\/14975","article-title":"Likert scale: explored and explained","volume":"7","author":"Joshi","year":"2015","journal-title":"Br. J. Appl. Sci. Technol."},{"issue":"6","key":"10.1016\/j.compbiomed.2024.108788_bib42","doi-asserted-by":"crossref","first-page":"1161","DOI":"10.1037\/h0077714","article-title":"A circumplex model of affect","volume":"39","author":"Russell","year":"1980","journal-title":"J. Pers. Soc. Psychol."},{"issue":"7","key":"10.1016\/j.compbiomed.2024.108788_bib43","first-page":"1798","article-title":"EEG-based emotion recognition in music listening","volume":"57","author":"Lin","year":"2010","journal-title":"IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng."},{"key":"10.1016\/j.compbiomed.2024.108788_bib44","series-title":"2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)","article-title":"Real-time modeling and 3D visualization of source dynamics and connectivity using wearable EEG","author":"Mullen","year":"2013"},{"key":"10.1016\/j.compbiomed.2024.108788_bib45","series-title":"2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)","article-title":"Online automatic artifact rejection using the real-time EEG source-mapping toolbox (REST)","author":"Pion-Tonachini","year":"2018"},{"year":"2014","series-title":"Adam: A Method for Stochastic Optimization","author":"Kingma","key":"10.1016\/j.compbiomed.2024.108788_bib46"},{"key":"10.1016\/j.compbiomed.2024.108788_bib47","article-title":"Pytorch: an imperative style, high-performance deep learning library","volume":"32","author":"Paszke","year":"2019","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.compbiomed.2024.108788_bib48","series-title":"Proceedings of the European Conference on Computer Vision (ECCV)","article-title":"Shufflenet v2: practical guidelines for efficient cnn architecture design","author":"Ma","year":"2018"},{"key":"10.1016\/j.compbiomed.2024.108788_bib49","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2022.105303","article-title":"Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism","volume":"143","author":"Li","year":"2022","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2024.108788_bib50","series-title":"Proceedings of the AAAI Conference on Artificial Intelligence","article-title":"Inception-v4, inception-resnet and the impact of residual connections on learning","author":"Szegedy","year":"2017"},{"key":"10.1016\/j.compbiomed.2024.108788_bib51","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","article-title":"Mobilenetv2: inverted residuals and linear bottlenecks","author":"Sandler","year":"2018"},{"key":"10.1016\/j.compbiomed.2024.108788_bib52","article-title":"Dynamic routing between capsules","volume":"30","author":"Sabour","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.compbiomed.2024.108788_bib53","series-title":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","article-title":"A novel local explainability approach for spectral insight into raw eeg-based deep learning classifiers","author":"Ellis","year":"2021"},{"key":"10.1016\/j.compbiomed.2024.108788_bib54","first-page":"1","article-title":"A novel explainable machine learning approach for EEG-based brain-computer interface systems","author":"Ieracitano","year":"2021","journal-title":"Neural Comput. Appl."},{"issue":"3","key":"10.1016\/j.compbiomed.2024.108788_bib55","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1016\/j.neulet.2006.06.039","article-title":"EEG phase synchronization during emotional response to positive and negative film stimuli","volume":"406","author":"Costa","year":"2006","journal-title":"Neurosci. Lett."},{"issue":"6","key":"10.1016\/j.compbiomed.2024.108788_bib56","doi-asserted-by":"crossref","first-page":"487","DOI":"10.1007\/s11571-017-9447-z","article-title":"Analysis of functional brain connections for positive\u2013negative emotions using phase locking value","volume":"11","author":"Dasdemir","year":"2017","journal-title":"Cognitive Neurodynamics"},{"key":"10.1016\/j.compbiomed.2024.108788_bib57","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.brainres.2010.09.102","article-title":"Cross-regional cortical synchronization during affective image viewing","volume":"1362","author":"Miskovic","year":"2010","journal-title":"Brain Res."},{"key":"10.1016\/j.compbiomed.2024.108788_bib58","doi-asserted-by":"crossref","first-page":"239","DOI":"10.3389\/fnhum.2016.00239","article-title":"The functional role of neural oscillations in non-verbal emotional communication","volume":"10","author":"Symons","year":"2016","journal-title":"Front. Hum. Neurosci."},{"key":"10.1016\/j.compbiomed.2024.108788_bib59","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2021.104684","article-title":"HVD-LSTM based recognition of epileptic seizures and normal human activity","volume":"136","author":"Khan","year":"2021","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2024.108788_bib60","doi-asserted-by":"crossref","first-page":"224","DOI":"10.3389\/fnbeh.2017.00224","article-title":"Frontal EEG asymmetry of mood: a mini-review","volume":"11","author":"Palmiero","year":"2017","journal-title":"Front. Behav. Neurosci."},{"key":"10.1016\/j.compbiomed.2024.108788_bib61","doi-asserted-by":"crossref","first-page":"107200","DOI":"10.1109\/ACCESS.2020.3000788","article-title":"Frontal EEG asymmetry of emotion for the same auditory stimulus","volume":"8","author":"Lee","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.compbiomed.2024.108788_bib62","doi-asserted-by":"crossref","DOI":"10.1016\/j.neuropsychologia.2021.108056","article-title":"The relationship between habitual use and real-time emotion regulation strategies in adolescents: evidence from frontal EEG asymmetry","volume":"162","author":"Yang","year":"2021","journal-title":"Neuropsychologia"}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482524008734?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482524008734?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T19:37:18Z","timestamp":1728243438000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482524008734"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,8]]},"references-count":62,"alternative-id":["S0010482524008734"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2024.108788","relation":{},"ISSN":["0010-4825"],"issn-type":[{"type":"print","value":"0010-4825"}],"subject":[],"published":{"date-parts":[[2024,8]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"HiRENet: Novel convolutional neural network architecture using Hilbert-transformed and raw electroencephalogram (EEG) for subject-independent emotion classification","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2024.108788","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.","name":"copyright","label":"Copyright"}],"article-number":"108788"}}