{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,22]],"date-time":"2024-10-22T01:40:09Z","timestamp":1729561209758,"version":"3.28.0"},"reference-count":56,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,5,1]],"date-time":"2024-05-01T00:00:00Z","timestamp":1714521600000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62302342","62225109"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2022YFF1202100","2021YFC2100101"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2024,5]]},"DOI":"10.1016\/j.compbiomed.2024.108330","type":"journal-article","created":{"date-parts":[[2024,3,21]],"date-time":"2024-03-21T08:17:22Z","timestamp":1711009042000},"page":"108330","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Prediction of protein N-terminal acetylation modification sites based on CNN-BiLSTM-attention model"],"prefix":"10.1016","volume":"174","author":[{"ORCID":"http:\/\/orcid.org\/0009-0009-3399-9301","authenticated-orcid":false,"given":"Jinsong","family":"Ke","sequence":"first","affiliation":[]},{"given":"Jianmei","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Hongfei","family":"Li","sequence":"additional","affiliation":[]},{"given":"Lei","family":"Yuan","sequence":"additional","affiliation":[]},{"given":"Guanghui","family":"Dong","sequence":"additional","affiliation":[]},{"given":"Guohua","family":"Wang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compbiomed.2024.108330_bib1","doi-asserted-by":"crossref","first-page":"2386","DOI":"10.1093\/bioinformatics\/bty977","article-title":"Capsule network for protein post-translational modification site prediction","volume":"35","author":"Duolin W","year":"2019","journal-title":"Bioinformatics"},{"key":"10.1016\/j.compbiomed.2024.108330_bib2","doi-asserted-by":"crossref","first-page":"41930","DOI":"10.1021\/acsomega.3c07086","article-title":"MSTL-kace: prediction of prokaryotic lysine acetylation sites based on multistage transfer learning strategy","volume":"8","author":"GangAo","year":"2023","journal-title":"ACS Omega"},{"key":"10.1016\/j.compbiomed.2024.108330_bib3","doi-asserted-by":"crossref","first-page":"8157","DOI":"10.1073\/pnas.0901931106","article-title":"Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans","volume":"106","author":"Thomas","year":"2009","journal-title":"Proc. Natl. Acad. Sci. U.S.A."},{"key":"10.1016\/j.compbiomed.2024.108330_bib4","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1186\/s12859-017-1699-4","article-title":"Identification of the sequence determinants of protein N-terminal acetylation through a decision tree approach","volume":"18","author":"D","year":"2017","journal-title":"BMC Bioinf."},{"key":"10.1016\/j.compbiomed.2024.108330_bib5","doi-asserted-by":"crossref","first-page":"746","DOI":"10.1016\/j.tibs.2016.07.005","article-title":"First things first: vital protein marks by N-terminal acetyltransferases","volume":"41","author":"Aksnes","year":"2016","journal-title":"Trends Biochem. Sci."},{"key":"10.1016\/j.compbiomed.2024.108330_bib6","article-title":"Improved species-specific lysine acetylation site prediction based on a large variety of features set","volume":"11","author":"Qiqige","year":"2016","journal-title":"PLoS One"},{"key":"10.1016\/j.compbiomed.2024.108330_bib7","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1016\/j.biocel.2008.08.027","article-title":"Acetylation of non-histone proteins modulates cellular signalling at multiple levels","volume":"41","author":"Spange","year":"2008","journal-title":"Int. J. Biochem. Cell Biol."},{"key":"10.1016\/j.compbiomed.2024.108330_bib8","article-title":"P0235 : protein N-terminal acetylation inhibition as a novel therapeutic target for hepatocellular carcinoma","volume":"62","author":"D'Avola","year":"2015","journal-title":"J. Hepatol."},{"key":"10.1016\/j.compbiomed.2024.108330_bib9","doi-asserted-by":"crossref","first-page":"269","DOI":"10.1038\/onc.2012.82","article-title":"Protein N-terminal acetyltransferases in cancer","volume":"32","author":"V","year":"2013","journal-title":"Oncogene"},{"key":"10.1016\/j.compbiomed.2024.108330_bib10","first-page":"E4370","article-title":"Control of Hsp90 chaperone and its clients by N-terminal acetylation and the N-end rule pathway","volume":"114","author":"Jang-Hyun","year":"2017","journal-title":"Proc. Natl. Acad. Sci. U.S.A."},{"key":"10.1016\/j.compbiomed.2024.108330_bib11","doi-asserted-by":"crossref","first-page":"126","DOI":"10.1016\/j.yjmcc.2014.08.014","article-title":"Identification of N-terminal protein acetylation and arginine methylation of the voltage-gated sodium channel in end-stage heart failure human heart","volume":"76","author":"Beltran-Alvarez","year":"2014","journal-title":"J. Mol. Cell. Cardiol."},{"key":"10.1016\/j.compbiomed.2024.108330_bib12","doi-asserted-by":"crossref","first-page":"313","DOI":"10.1080\/03630260701459473","article-title":"A Val\u2192Leu N-terminal mutation leading to retention of the methionine, and partial acetylation found in the globin gene in Cis with a \u2212\u03b13.7 thalassemia deletion","volume":"31","author":"Harteveld","year":"2007","journal-title":"Hemoglobin"},{"key":"10.1016\/j.compbiomed.2024.108330_bib13","article-title":"Effects of N-terminal acetylation on the aggregation of disease-related \u03b1-synuclein variants","volume":"435","author":"Rosie","year":"2022","journal-title":"J. Mol. Biol."},{"key":"10.1016\/j.compbiomed.2024.108330_bib14","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1016\/bs.mie.2022.09.003","article-title":"Probing the effects of N-terminal acetylation on \u03b1-synuclein structure, aggregation and cytotoxicity","volume":"686","author":"Rosie","year":"2023","journal-title":"Methods Enzymol."},{"key":"10.1016\/j.compbiomed.2024.108330_bib15","doi-asserted-by":"crossref","first-page":"951","DOI":"10.1017\/S0967199414000562","article-title":"Investigation of histone H4 hyperacetylation dynamics in the 5S rRNA genes family by chromatin immunoprecipitation assay","volume":"23","author":"Burliba\u0219a","year":"2014","journal-title":"Zygote"},{"key":"10.1016\/j.compbiomed.2024.108330_bib16","article-title":"Histone deacetylase inhibitor butyrate inhibits the cellular immunity and increases the serum immunity of pearl oyster Pinctada fucata martensii","volume":"133","author":"Jingmiao","year":"2023","journal-title":"Fish Shellfish Immunol."},{"key":"10.1016\/j.compbiomed.2024.108330_bib17","doi-asserted-by":"crossref","first-page":"12449","DOI":"10.1073\/pnas.1210303109","article-title":"N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB","volume":"109","author":"Petra","year":"2012","journal-title":"Proc. Natl. Acad. Sci. U.S.A."},{"key":"10.1016\/j.compbiomed.2024.108330_bib18","doi-asserted-by":"crossref","first-page":"2042","DOI":"10.1021\/acs.jcim.5b00320","article-title":"Identification of protein-protein interactions by detecting correlated Mutation at the interface","volume":"55","author":"Fei","year":"2015","journal-title":"J. Chem. Inf. Model."},{"key":"10.1016\/j.compbiomed.2024.108330_bib19","doi-asserted-by":"crossref","first-page":"595","DOI":"10.1016\/S0022-2836(02)01269-X","article-title":"N-Terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins","volume":"325","author":"Polevoda","year":"2003","journal-title":"J. Mol. Biol."},{"key":"10.1016\/j.compbiomed.2024.108330_bib20","doi-asserted-by":"crossref","first-page":"4073","DOI":"10.1021\/acs.jproteome.6b00053","article-title":"Novel IEF peptide fractionation method reveals a detailed profile of N-terminal acetylation in chemotherapy-responsive and -resistant ovarian cancer cells","volume":"15","author":"Florian","year":"2016","journal-title":"J. Proteome Res."},{"key":"10.1016\/j.compbiomed.2024.108330_bib21","doi-asserted-by":"crossref","first-page":"1269","DOI":"10.1093\/bioinformatics\/bti130","article-title":"NetAcet: prediction of N-terminal acetylation sites","volume":"21","author":"Lars","year":"2005","journal-title":"Bioinformatics"},{"key":"10.1016\/j.compbiomed.2024.108330_bib22","doi-asserted-by":"crossref","first-page":"1974","DOI":"10.1093\/bioinformatics\/btu165","article-title":"Motifs tree: a new method for predicting post-translational modifications","volume":"30","author":"Christophe","year":"2014","journal-title":"Bioinformatics"},{"key":"10.1016\/j.compbiomed.2024.108330_bib23","doi-asserted-by":"crossref","first-page":"W140","DOI":"10.1093\/nar\/gkaa275","article-title":"MusiteDeep: a deep-learning based webserver for protein post-translational modification site prediction and visualization","volume":"48","author":"Duolin","year":"2020","journal-title":"Nucleic Acids Res."},{"key":"10.1016\/j.compbiomed.2024.108330_bib24","article-title":"Structured sparse regularization based random vector functional link networks for DNA N4-methylcytosine sites prediction","volume":"235","author":"Hao","year":"2024","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.compbiomed.2024.108330_bib25","doi-asserted-by":"crossref","DOI":"10.3390\/ijms19092817","article-title":"A hybrid deep learning model for predicting protein hydroxylation sites","volume":"19","author":"Long","year":"2018","journal-title":"Int. J. Mol. Sci."},{"key":"10.1016\/j.compbiomed.2024.108330_bib26","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12859-019-2940-0","article-title":"DeepACLSTM: deep asymmetric convolutional long short-term memory neural models for protein secondary structure prediction","volume":"20","author":"Guo","year":"2019","journal-title":"BMC Bioinf."},{"key":"10.1016\/j.compbiomed.2024.108330_bib27","doi-asserted-by":"crossref","first-page":"2766","DOI":"10.1093\/bioinformatics\/bty1051","article-title":"DeepPhos: prediction of protein phosphorylation sites with deep learning","volume":"35","author":"L","year":"2019","journal-title":"Bioinformatics"},{"key":"10.1016\/j.compbiomed.2024.108330_bib28","article-title":"Detection of transcription factors binding to methylated DNA by deep recurrent neural network","volume":"23","author":"Hongfei","year":"2021","journal-title":"Briefings Bioinf."},{"key":"10.1016\/j.compbiomed.2024.108330_bib29","article-title":"Searching and navigating UniProt databases","volume":"3","author":"C","year":"2023","journal-title":"Current protocols"},{"key":"10.1016\/j.compbiomed.2024.108330_bib30","doi-asserted-by":"crossref","first-page":"680","DOI":"10.1093\/bioinformatics\/btq003","article-title":"CD-HIT Suite: a web server for clustering and comparing biological sequences","volume":"26","author":"Ying","year":"2010","journal-title":"Bioinformatics"},{"key":"10.1016\/j.compbiomed.2024.108330_bib31","first-page":"253","article-title":"A novel method for N-terminal acetylation prediction","volume":"2","author":"Liu","year":"2004","journal-title":"Dev. Reprod. Biol."},{"key":"10.1016\/j.compbiomed.2024.108330_bib32","doi-asserted-by":"crossref","first-page":"282","DOI":"10.1504\/IJDMB.2013.056078","article-title":"Predicting human microRNA-disease associations based on support vector machine","volume":"8","author":"Jiang","year":"2014","journal-title":"Int. J. Data Min. Bioinf."},{"key":"10.1016\/j.compbiomed.2024.108330_bib33","article-title":"SecProMTB: support vector machine-based classifier for secretory proteins using imbalanced data sets applied to Mycobacterium tuberculosis","volume":"19","author":"Chaolu","year":"2019","journal-title":"Proteomics"},{"key":"10.1016\/j.compbiomed.2024.108330_bib34","article-title":"iBLP: an XGBoost-based predictor for identifying bioluminescent proteins","volume":"2021","author":"Dan","year":"2021","journal-title":"Comput. Math. Methods Med."},{"key":"10.1016\/j.compbiomed.2024.108330_bib35","first-page":"325","article-title":"CrystalM: a multi-view fusion approach for protein crystallization prediction","volume":"18","author":"Yubo","year":"2019","journal-title":"IEEE ACM Trans. Comput. Biol. Bioinf."},{"key":"10.1016\/j.compbiomed.2024.108330_bib36","doi-asserted-by":"crossref","first-page":"4666","DOI":"10.1016\/j.ygeno.2020.08.016","article-title":"Prediction of antioxidant proteins using hybrid feature representation method and random forest","volume":"112","author":"Ao","year":"2020","journal-title":"Genomics"},{"key":"10.1016\/j.compbiomed.2024.108330_bib37","first-page":"11","article-title":"iGluK-Deep: computational identification of lysine glutarylation sites using deep neural networks with general pseudo amino acid compositions","volume":"40","author":"Sheraz","year":"2021","journal-title":"J. Biomol. Struct. Dynam."},{"key":"10.1016\/j.compbiomed.2024.108330_bib38","article-title":"A protein identification method for proteomics using amino acid composition analysis with IoT-based remote control","volume":"657","author":"Kazuyuki","year":"2022","journal-title":"Anal. Biochem."},{"key":"10.1016\/j.compbiomed.2024.108330_bib39","doi-asserted-by":"crossref","first-page":"446","DOI":"10.2174\/1574893615999200707141926","article-title":"PoGB-pred: prediction of antifreeze proteins sequences using amino acid composition with feature selection followed by a sequential-based ensemble approach","volume":"16","author":"Rafay","year":"2021","journal-title":"Curr. Bioinf."},{"key":"10.1016\/j.compbiomed.2024.108330_bib40","article-title":"Prediction of apoptosis protein subcellular location based on amphiphilic pseudo amino acid composition","volume":"14","author":"Wenxia","year":"2023","journal-title":"Front. Genet."},{"key":"10.1016\/j.compbiomed.2024.108330_bib41","doi-asserted-by":"crossref","first-page":"190","DOI":"10.2174\/1574893614666181212102749","article-title":"A review on the recent developments of sequence-based protein feature extraction methods","volume":"14","author":"Zhang","year":"2019","journal-title":"Curr. Bioinf."},{"key":"10.1016\/j.compbiomed.2024.108330_bib42","article-title":"Prediction of hormone-binding proteins based on K-mer feature representation and naive Bayes","volume":"12","author":"Yuxin","year":"2021","journal-title":"Front. Genet."},{"key":"10.1016\/j.compbiomed.2024.108330_bib43","doi-asserted-by":"crossref","first-page":"213","DOI":"10.6026\/97320630014213","article-title":"Prediction of protein acetylation sites using kernel naive Bayes classifier based on protein sequences profiling","volume":"14","author":"Shakil","year":"2018","journal-title":"Bioinformation"},{"key":"10.1016\/j.compbiomed.2024.108330_bib44","article-title":"Online surface temperature prediction and abnormal diagnosis of lithium-ion batteries based on hybrid neural network and fault threshold optimization","volume":"243","author":"Hongqian","year":"2024","journal-title":"Reliab. Eng. Syst. Saf."},{"key":"10.1016\/j.compbiomed.2024.108330_bib45","article-title":"BERT- and BiLSTM-based sentiment analysis of online Chinese buzzwords","volume":"14","author":"Xinlu","year":"2022","journal-title":"Future Internet"},{"key":"10.1016\/j.compbiomed.2024.108330_bib46","article-title":"GloVe-CNN-BiLSTM model for sentiment analysis on text reviews","volume":"2022","author":"Li","year":"2022","journal-title":"J. Sens."},{"key":"10.1016\/j.compbiomed.2024.108330_bib47","article-title":"Research on CNN-BiLSTM fall detection algorithm based on improved attention mechanism","volume":"12","author":"Congcong","year":"2022","journal-title":"Appl. Sci."},{"key":"10.1016\/j.compbiomed.2024.108330_bib48","doi-asserted-by":"crossref","first-page":"609","DOI":"10.1186\/s12859-019-3199-1","article-title":"Attention mechanism enhanced LSTM with residual architecture and its application for protein-protein interaction residue pairs prediction","volume":"20","author":"Jiale","year":"2019","journal-title":"BMC Bioinf."},{"key":"10.1016\/j.compbiomed.2024.108330_bib49","article-title":"Attention-based long short term memory model for DNA damage prediction in mammalian cells","volume":"13","author":"Alsharaiah","year":"2022","journal-title":"Int. J. Adv. Comput. Sci. Appl."},{"key":"10.1016\/j.compbiomed.2024.108330_bib50","article-title":"A protein succinylation sites prediction method based on the hybrid architecture of LSTM network and CNN","volume":"20","author":"Die","year":"2022","journal-title":"J. Bioinf. Comput. Biol."},{"key":"10.1016\/j.compbiomed.2024.108330_bib51","doi-asserted-by":"crossref","first-page":"1662","DOI":"10.1109\/ACCESS.2017.2779939","article-title":"LSTM fully convolutional networks for time series classification","volume":"6","author":"Fazle","year":"2018","journal-title":"IEEE Access"},{"key":"10.1016\/j.compbiomed.2024.108330_bib52","article-title":"Direct generation of protein conformational ensembles via machine learning","volume":"14","author":"Giacomo","year":"2023","journal-title":"Nat. Commun."},{"key":"10.1016\/j.compbiomed.2024.108330_bib53","doi-asserted-by":"crossref","first-page":"618","DOI":"10.1016\/j.neucom.2021.05.100","article-title":"Identification of drug-target interactions via multi-view graph regularized link propagation model","volume":"461","author":"Yijie","year":"2021","journal-title":"Neurocomputing"},{"key":"10.1016\/j.compbiomed.2024.108330_bib54","doi-asserted-by":"crossref","first-page":"235","DOI":"10.2174\/1574893614666191202152328","article-title":"Citrullination site prediction by incorporating sequence coupled effects into PseAAC and resolving data imbalance issue","volume":"15","author":"Hasan","year":"2020","journal-title":"Curr. Bioinf."},{"key":"10.1016\/j.compbiomed.2024.108330_bib55","article-title":"Multi-correntropy fusion based fuzzy system for predicting DNA N4-methylcytosine sites","volume":"100","author":"Yijie","year":"2023","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.compbiomed.2024.108330_bib56","doi-asserted-by":"crossref","first-page":"290","DOI":"10.1038\/nmeth.4627","article-title":"Using deep learning to model the hierarchical structure and function of a cell","volume":"15","author":"Jianzhu","year":"2018","journal-title":"Nat. Methods"}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482524004141?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482524004141?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,10,22]],"date-time":"2024-10-22T01:06:03Z","timestamp":1729559163000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482524004141"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,5]]},"references-count":56,"alternative-id":["S0010482524004141"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2024.108330","relation":{},"ISSN":["0010-4825"],"issn-type":[{"type":"print","value":"0010-4825"}],"subject":[],"published":{"date-parts":[[2024,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Prediction of protein N-terminal acetylation modification sites based on CNN-BiLSTM-attention model","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2024.108330","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"108330"}}