{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T15:55:53Z","timestamp":1726502153159},"reference-count":43,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["82202904"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100005047","name":"Natural Science Foundation of Liaoning Province","doi-asserted-by":"publisher","award":["2022-BS-128"],"id":[{"id":"10.13039\/501100005047","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100015226","name":"Shengjing Hospital","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100015226","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2024,3]]},"DOI":"10.1016\/j.compbiomed.2024.108125","type":"journal-article","created":{"date-parts":[[2024,2,6]],"date-time":"2024-02-06T00:50:55Z","timestamp":1707180655000},"page":"108125","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Artificial intelligence to predict T4 stage of pancreatic ductal adenocarcinoma using CT imaging"],"prefix":"10.1016","volume":"171","author":[{"given":"Qi","family":"Miao","sequence":"first","affiliation":[]},{"given":"Xuechun","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Jingjing","family":"Cui","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8081-1940","authenticated-orcid":false,"given":"Haoxin","family":"Zheng","sequence":"additional","affiliation":[]},{"given":"Yan","family":"Xie","sequence":"additional","affiliation":[]},{"given":"Kexin","family":"Zhu","sequence":"additional","affiliation":[]},{"given":"Ruimei","family":"Chai","sequence":"additional","affiliation":[]},{"given":"Yuanxi","family":"Jiang","sequence":"additional","affiliation":[]},{"given":"Dongli","family":"Feng","sequence":"additional","affiliation":[]},{"given":"Xin","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Feng","family":"Shi","sequence":"additional","affiliation":[]},{"given":"Xiaodong","family":"Tan","sequence":"additional","affiliation":[]},{"given":"Guoguang","family":"Fan","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0007-6326","authenticated-orcid":false,"given":"Keke","family":"Liang","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.compbiomed.2024.108125_bib1","doi-asserted-by":"crossref","first-page":"17","DOI":"10.3322\/caac.21763","article-title":"Cancer statistics, 2023","volume":"73","author":"Siegel","year":"2023","journal-title":"CA A Cancer J. Clin."},{"key":"10.1016\/j.compbiomed.2024.108125_bib2","doi-asserted-by":"crossref","DOI":"10.1001\/jamanetworkopen.2021.4708","article-title":"Estimated projection of US cancer incidence and death to 2040","volume":"4","author":"Rahib","year":"2021","journal-title":"JAMA Netw. Open"},{"key":"10.1016\/j.compbiomed.2024.108125_bib3","article-title":"Pancreatic cancer","volume":"2","author":"Kleeff","year":"2016","journal-title":"Nat. Rev. Dis. Prim."},{"issue":"21","key":"10.1016\/j.compbiomed.2024.108125_bib4","doi-asserted-by":"crossref","first-page":"2541","DOI":"10.1200\/JCO.2016.67.5553","article-title":"Potentially curable pancreatic cancer: American society of clinical oncology clinical practice guideline","volume":"34","author":"Khorana","year":"2016","journal-title":"J. Clin. Oncol."},{"issue":"12","key":"10.1016\/j.compbiomed.2024.108125_bib5","doi-asserted-by":"crossref","DOI":"10.1001\/jamasurg.2018.3617","article-title":"International validation of the eighth edition of the American Joint committee on cancer (AJCC) TNM staging system in patients with resected pancreatic cancer","volume":"153","author":"van Roessel","year":"2018","journal-title":"JAMA Surg"},{"issue":"3","key":"10.1016\/j.compbiomed.2024.108125_bib6","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1097\/SLA.0000000000005249","article-title":"Bayesian approach to understand the association between treatment down-staging and survival for patients with pancreatic adenocarcinoma","volume":"275","author":"da Costa","year":"2022","journal-title":"Ann. Surg."},{"key":"10.1016\/j.compbiomed.2024.108125_bib7","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.ijsu.2017.02.007","article-title":"Actual long-term outcome of T1 and T2 pancreatic ductal adenocarcinoma after surgical resection","volume":"40","author":"Han","year":"2017","journal-title":"Int. J. Surg."},{"issue":"Suppl","key":"10.1016\/j.compbiomed.2024.108125_bib8","doi-asserted-by":"crossref","first-page":"S79","DOI":"10.3346\/jkms.2007.22.S.S79","article-title":"Clinicopathological aspects of 542 cases of pancreatic cancer: a special emphasis on small pancreatic cancer","volume":"22","author":"Jung","year":"2007","journal-title":"J. Kor. Med. Sci."},{"issue":"3","key":"10.1016\/j.compbiomed.2024.108125_bib9","doi-asserted-by":"crossref","first-page":"238","DOI":"10.21147\/j.issn.1000-9604.2022.03.05","article-title":"National guidelines for diagnosis and treatment of pancreatic cancer 2022 in China (English version)","volume":"34","year":"2022","journal-title":"Chin. J. Cancer Res."},{"issue":"6","key":"10.1016\/j.compbiomed.2024.108125_bib10","doi-asserted-by":"crossref","first-page":"1653","DOI":"10.1148\/rg.276075034","article-title":"Comprehensive preoperative assessment of pancreatic adenocarcinoma with 64-section volumetric CT","volume":"27","author":"Brennan","year":"2007","journal-title":"Radiographics"},{"issue":"10","key":"10.1016\/j.compbiomed.2024.108125_bib11","doi-asserted-by":"crossref","first-page":"6883","DOI":"10.1007\/s00330-023-09659-0","article-title":"MRI vs. CT for pancreatic adenocarcinoma vascular invasion: comparative diagnostic test accuracy systematic review and meta-analysis","volume":"33","author":"Jajodia","year":"2023","journal-title":"Eur. Radiol."},{"issue":"7","key":"10.1016\/j.compbiomed.2024.108125_bib12","first-page":"818","article-title":"Vascular invasion in pancreatic cancer: imaging modalities, preoperative diagnosis and surgical management","volume":"16","author":"Buchs","year":"2010","journal-title":"World J. Gastroenterol."},{"issue":"1","key":"10.1016\/j.compbiomed.2024.108125_bib13","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1186\/s12876-020-01228-9","article-title":"Diagnosis of vascular invasion in pancreatic ductal adenocarcinoma using endoscopic ultrasound elastography","volume":"20","author":"Yamada","year":"2020","journal-title":"BMC Gastroenterol."},{"issue":"19\u201320","key":"10.1016\/j.compbiomed.2024.108125_bib14","first-page":"286","article-title":"Vascular invasion in pancreatic cancer: evaluation of endoscopic ultrasonography, computed tomography, ultrasonography, and angiography","volume":"137","author":"Buchs","year":"2007","journal-title":"Swiss Med. Wkly."},{"issue":"8","key":"10.1016\/j.compbiomed.2024.108125_bib15","doi-asserted-by":"crossref","first-page":"2835","DOI":"10.1007\/s00261-022-03581-7","article-title":"Vascular involvement and resectability of pancreatic ductal adenocarcinoma on contrast-enhanced MRI: comparison with pancreatic protocol CT","volume":"47","author":"Noda","year":"2022","journal-title":"Abdom Radiol (NY)"},{"issue":"4","key":"10.1016\/j.compbiomed.2024.108125_bib16","doi-asserted-by":"crossref","first-page":"1982","DOI":"10.7150\/thno.52508","article-title":"Fully end-to-end deep-learning-based diagnosis of pancreatic tumors","volume":"11","author":"Si","year":"2021","journal-title":"Theranostics"},{"issue":"6","key":"10.1016\/j.compbiomed.2024.108125_bib17","doi-asserted-by":"crossref","first-page":"1668","DOI":"10.1148\/rg.2015150023","article-title":"Understanding and confronting our mistakes: the epidemiology of error in radiology and strategies for error reduction","volume":"35","author":"Bruno","year":"2015","journal-title":"Radiographics"},{"issue":"1","key":"10.1016\/j.compbiomed.2024.108125_bib18","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1148\/radiol.2021204289","article-title":"Deep learning model for automated detection and classification of central canal, lateral recess, and neural foraminal stenosis at lumbar spine MRI","volume":"300","author":"Hallinan","year":"2021","journal-title":"Radiology"},{"issue":"2","key":"10.1016\/j.compbiomed.2024.108125_bib19","doi-asserted-by":"crossref","first-page":"318","DOI":"10.1148\/radiol.2018171820","article-title":"Current applications and future impact of machine learning in radiology","volume":"288","author":"Choy","year":"2018","journal-title":"Radiology"},{"issue":"25","key":"10.1016\/j.compbiomed.2024.108125_bib20","doi-asserted-by":"crossref","first-page":"7556","DOI":"10.7150\/thno.38065","article-title":"Current status and future trends of clinical diagnoses via image-based deep learning","volume":"9","author":"Xu","year":"2019","journal-title":"Theranostics"},{"issue":"2","key":"10.1016\/j.compbiomed.2024.108125_bib21","doi-asserted-by":"crossref","first-page":"349","DOI":"10.2214\/AJR.18.20901","article-title":"Utility of CT radiomics features in differentiation of pancreatic ductal adenocarcinoma from normal pancreatic tissue","volume":"213","author":"Chu","year":"2019","journal-title":"AJR Am. J. Roentgenol."},{"issue":"5","key":"10.1016\/j.compbiomed.2024.108125_bib22","doi-asserted-by":"crossref","first-page":"1104","DOI":"10.2214\/AJR.20.23490","article-title":"CT radiomics-based preoperative survival prediction in patients with pancreatic ductal adenocarcinoma","volume":"217","author":"Park","year":"2021","journal-title":"AJR Am. J. Roentgenol."},{"issue":"3","key":"10.1016\/j.compbiomed.2024.108125_bib23","doi-asserted-by":"crossref","first-page":"610","DOI":"10.1148\/radiol.2021210699","article-title":"CT radiomic features of superior mesenteric artery involvement in pancreatic ductal adenocarcinoma: a pilot study","volume":"301","author":"Rigiroli","year":"2021","journal-title":"Radiology"},{"issue":"1","key":"10.1016\/j.compbiomed.2024.108125_bib24","doi-asserted-by":"crossref","first-page":"160","DOI":"10.1148\/radiol.220329","article-title":"Artificial intelligence to predict lymph node metastasis at CT in pancreatic ductal adenocarcinoma","volume":"306","author":"Bian","year":"2023","journal-title":"Radiology"},{"issue":"10","key":"10.1016\/j.compbiomed.2024.108125_bib25","doi-asserted-by":"crossref","first-page":"6659","DOI":"10.1007\/s00330-023-09653-6","article-title":"Current state of radiomic research in pancreatic cancer: focusing on study design and reproducibility of findings","volume":"33","author":"Malcolm","year":"2023","journal-title":"Eur. Radiol."},{"issue":"1","key":"10.1016\/j.compbiomed.2024.108125_bib26","doi-asserted-by":"crossref","first-page":"386","DOI":"10.1109\/TIP.2016.2624198","article-title":"A bottom-up approach for pancreas segmentation using cascaded superpixels and (deep) image patch labeling","volume":"26","author":"Farag","year":"2017","journal-title":"IEEE Trans. Image Process."},{"issue":"1","key":"10.1016\/j.compbiomed.2024.108125_bib27","doi-asserted-by":"crossref","first-page":"3092","DOI":"10.1038\/s41598-022-07111-9","article-title":"Segmentation of pancreatic ductal adenocarcinoma (PDAC) and surrounding vessels in CT images using deep convolutional neural networks and texture descriptors","volume":"12","author":"Mahmoudi","year":"2022","journal-title":"Sci. Rep."},{"issue":"1","key":"10.1016\/j.compbiomed.2024.108125_bib28","doi-asserted-by":"crossref","first-page":"4128","DOI":"10.1038\/s41467-022-30695-9","article-title":"The medical segmentation Decathlon","volume":"13","author":"Antonelli","year":"2022","journal-title":"Nat. Commun."},{"issue":"1","key":"10.1016\/j.compbiomed.2024.108125_bib29","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1148\/radiol.2291020582","article-title":"Pancreatic malignancy: value of arterial, pancreatic, and hepatic phase imaging with multi-detector row CT","volume":"229","author":"Fletcher","year":"2003","journal-title":"Radiology"},{"key":"10.1016\/j.compbiomed.2024.108125_bib30","series-title":"Segmentation of CT Thoracic Organs by Multi-Resolution VB-Nets","author":"Han","year":"2019"},{"key":"10.1016\/j.compbiomed.2024.108125_bib31","doi-asserted-by":"crossref","DOI":"10.3389\/fradi.2023.1153784","article-title":"An integrated research platform for one-stop analysis of medical images","volume":"3","author":"Wu","year":"2023","journal-title":"Front Radiol"},{"issue":"1","key":"10.1016\/j.compbiomed.2024.108125_bib32","doi-asserted-by":"crossref","first-page":"140","DOI":"10.1148\/radiol.220171","article-title":"Deep learning-based detection of solid and cystic pancreatic neoplasms at contrast-enhanced CT","volume":"306","author":"Park","year":"2023","journal-title":"Radiology"},{"issue":"1","key":"10.1016\/j.compbiomed.2024.108125_bib33","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1148\/radiol.220152","article-title":"Pancreatic cancer detection on CT scans with deep learning: a nationwide population-based study","volume":"306","author":"Chen","year":"2023","journal-title":"Radiology"},{"issue":"11","key":"10.1016\/j.compbiomed.2024.108125_bib34","doi-asserted-by":"crossref","first-page":"791","DOI":"10.1097\/RLI.0000000000000992","article-title":"Automatic detection of pancreatic lesions and main pancreatic duct dilatation on portal venous CT scans using deep learning","volume":"58","author":"Abi Nader","year":"2023","journal-title":"Invest. Radiol."},{"issue":"2","key":"10.1016\/j.compbiomed.2024.108125_bib35","doi-asserted-by":"crossref","first-page":"376","DOI":"10.3390\/cancers14020376","article-title":"Fully automatic deep learning framework for pancreatic ductal adenocarcinoma detection on computed tomography","volume":"14","author":"Alves","year":"2022","journal-title":"Cancers"},{"issue":"6","key":"10.1016\/j.compbiomed.2024.108125_bib36","doi-asserted-by":"crossref","first-page":"e303","DOI":"10.1016\/S2589-7500(20)30078-9","article-title":"Deep learning to distinguish pancreatic cancer tissue from non-cancerous pancreatic tissue: a retrospective study with cross-racial external validation","volume":"2","author":"Liu","year":"2020","journal-title":"Lancet Digit Health"},{"issue":"20","key":"10.1016\/j.compbiomed.2024.108125_bib37","doi-asserted-by":"crossref","first-page":"5111","DOI":"10.3390\/cancers14205111","article-title":"Semantic segmentation of pancreatic cancer in endoscopic ultrasound images using deep learning approach","volume":"14","author":"Seo","year":"2022","journal-title":"Cancers"},{"key":"10.1016\/j.compbiomed.2024.108125_bib38","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2023.106657","article-title":"MFCNet: a multi-modal fusion and calibration networks for 3D pancreas tumor segmentation on PET-CT images","volume":"155","author":"Wang","year":"2023","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2024.108125_bib39","doi-asserted-by":"crossref","DOI":"10.1016\/j.pan.2023.05.008","article-title":"Bounding box-based 3D AI model for user-guided volumetric segmentation of pancreatic ductal adenocarcinoma on standard-of-care CTs","volume":"23","author":"Mukherjee","year":"2023","journal-title":"Pancreatology"},{"issue":"1","key":"10.1016\/j.compbiomed.2024.108125_bib40","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1097\/SLA.0000000000003859","article-title":"Prognosis based definition of resectability in pancreatic cancer: a road map to new guidelines","volume":"275","author":"Oba","year":"2022","journal-title":"Ann. Surg."},{"issue":"4","key":"10.1016\/j.compbiomed.2024.108125_bib41","doi-asserted-by":"crossref","first-page":"2433","DOI":"10.1245\/s10434-022-12901-6","article-title":"Resected early-onset pancreatic cancer: practices and outcomes in an international dual-center study","volume":"30","author":"Leonhardt","year":"2023","journal-title":"Ann. Surg Oncol."},{"issue":"7","key":"10.1016\/j.compbiomed.2024.108125_bib42","doi-asserted-by":"crossref","first-page":"961","DOI":"10.1016\/j.hpb.2020.04.005","article-title":"Arterial resections in pancreatic cancer - systematic review and meta-analysis","volume":"22","author":"Ma\u0142czak","year":"2020","journal-title":"HPB (Oxford)"},{"issue":"3","key":"10.1016\/j.compbiomed.2024.108125_bib43","doi-asserted-by":"crossref","first-page":"505","DOI":"10.1148\/radiol.2021202553","article-title":"The biological meaning of radiomic features","volume":"298","author":"Tomaszewski","year":"2021","journal-title":"Radiology"}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482524002099?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482524002099?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,10]],"date-time":"2024-05-10T07:00:19Z","timestamp":1715324419000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482524002099"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,3]]},"references-count":43,"alternative-id":["S0010482524002099"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2024.108125","relation":{},"ISSN":["0010-4825"],"issn-type":[{"value":"0010-4825","type":"print"}],"subject":[],"published":{"date-parts":[[2024,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Artificial intelligence to predict T4 stage of pancreatic ductal adenocarcinoma using CT imaging","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2024.108125","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"108125"}}