{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,23]],"date-time":"2025-04-23T04:52:15Z","timestamp":1745383935968,"version":"3.37.3"},"reference-count":55,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/100014717","name":"National Natural Science Foundation of China National Outstanding Youth Science Fund Project","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100014717","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002855","name":"Ministry of Science and Technology of the People's Republic of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002855","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004826","name":"Beijing Natural Science Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004826","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012236","name":"Beijing Institute of Technology Research Fund Program for Young Scholars","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012236","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2024,3]]},"DOI":"10.1016\/j.compbiomed.2024.108069","type":"journal-article","created":{"date-parts":[[2024,2,6]],"date-time":"2024-02-06T17:45:30Z","timestamp":1707241530000},"page":"108069","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"C","title":["Effective hyper-connectivity network construction and learning: Application to major depressive disorder identification"],"prefix":"10.1016","volume":"171","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-1646-637X","authenticated-orcid":false,"given":"Jingyu","family":"Liu","sequence":"first","affiliation":[]},{"given":"Wenxin","family":"Yang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-4463-9087","authenticated-orcid":false,"given":"Yulan","family":"Ma","sequence":"additional","affiliation":[]},{"given":"Qunxi","family":"Dong","sequence":"additional","affiliation":[]},{"given":"Yang","family":"Li","sequence":"additional","affiliation":[]},{"given":"Bin","family":"Hu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compbiomed.2024.108069_bib1","article-title":"Hierarchical multifeature fusion via audio-response-level modeling for depression detection","author":"Zhou","year":"2022","journal-title":"IEEE Trans. Comput. Soc. Syst."},{"key":"10.1016\/j.compbiomed.2024.108069_bib2","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2023.106741","article-title":"Machine learning based approaches for clinical and non-clinical depression recognition and depression relapse prediction using audiovisual and EEG modalities: a comprehensive review","volume":"159","author":"Yasin","year":"2023","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2024.108069_bib3","article-title":"A multiview sparse dynamic graph convolution-based region-attention feature fusion network for major depressive disorder detection","author":"Cui","year":"2023","journal-title":"IEEE Trans. Comput. Soc. Syst."},{"key":"10.1016\/j.compbiomed.2024.108069_bib4","doi-asserted-by":"crossref","first-page":"2415","DOI":"10.1093\/cercor\/bhac217","article-title":"Classification of major depressive disorder using an attention-guided unified deep convolutional neural network and individual structural covariance network","volume":"33","author":"Gao","year":"2022","journal-title":"Cerebr. Cortex"},{"key":"10.1016\/j.compbiomed.2024.108069_bib5","doi-asserted-by":"crossref","DOI":"10.3389\/fninf.2018.00058","article-title":"Learning brain connectivity sub-networks by group- constrained sparse inverse covariance estimation for Alzheimer's disease classification","volume":"12","author":"Li","year":"2018","journal-title":"Front. Neuroinf."},{"issue":"1","key":"10.1016\/j.compbiomed.2024.108069_bib6","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1038\/nm.4246","article-title":"Resting-state connectivity biomarkers define neurophysiological subtypes of depression","volume":"23","author":"Drysdale","year":"2017","journal-title":"Nat. Med."},{"key":"10.1016\/j.compbiomed.2024.108069_bib7","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2023.107478","article-title":"Multi-view graph network learning framework for identification of major depressive disorder","volume":"166","author":"Zhang","year":"2023","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2024.108069_bib8","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2022.106521","article-title":"BrainTGL: a dynamic graph representation learning model for brain network analysis","volume":"153","author":"Liu","year":"2023","journal-title":"Comput. Biol. Med."},{"issue":"12","key":"10.1016\/j.compbiomed.2024.108069_bib9","doi-asserted-by":"crossref","first-page":"4707","DOI":"10.1007\/s00415-021-10580-z","article-title":"Functional connectivity in mild cognitive impairment with Lewy bodies","volume":"268","author":"Schumacher","year":"2021","journal-title":"J. Neurol."},{"key":"10.1016\/j.compbiomed.2024.108069_bib10","article-title":"Topological analysis of brain dynamics in autism based on graph and persistent homology","volume":"150","author":"Jafadideh","year":"2022","journal-title":"Comput. Biol. Med."},{"issue":"1","key":"10.1016\/j.compbiomed.2024.108069_bib11","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1109\/TMI.2021.3110829","article-title":"Virtual adversarial training-based deep feature aggregation network from dynamic effective connectivity for MCI identification","volume":"41","author":"Li","year":"2022","journal-title":"IEEE Trans. Med. Imag."},{"issue":"21","key":"10.1016\/j.compbiomed.2024.108069_bib12","doi-asserted-by":"crossref","DOI":"10.3390\/ijerph192114045","article-title":"Resting-state functional connectivity impairment in patients with major depressive episode","volume":"19","author":"Stoyanov","year":"2022","journal-title":"Int. J. Environ. Res. Publ. Health"},{"issue":"16","key":"10.1016\/j.compbiomed.2024.108069_bib13","doi-asserted-by":"crossref","first-page":"1115","DOI":"10.1097\/WNR.0000000000001335","article-title":"Altered hypothalamic functional connectivity patterns in major depressive disorder","volume":"30","author":"Wang","year":"2019","journal-title":"Neuroreport"},{"issue":"11","key":"10.1016\/j.compbiomed.2024.108069_bib14","doi-asserted-by":"crossref","first-page":"6681","DOI":"10.1093\/cercor\/bhac534","article-title":"Shared and distinct patterns of dynamic functional connectivity variability of thalamo-cortical circuit in bipolar depression and major depressive disorder","volume":"33","author":"Lu","year":"2023","journal-title":"Cerebr. Cortex"},{"key":"10.1016\/j.compbiomed.2024.108069_bib15","doi-asserted-by":"crossref","DOI":"10.1016\/j.pnpbp.2021.110369","article-title":"Dynamic changes of large-scale resting-state functional networks in major depressive disorder","volume":"111","author":"Zhang","year":"2021","journal-title":"Prog. Neuro-Psychopharmacol. Biol. Psychiatry"},{"issue":"9","key":"10.1016\/j.compbiomed.2024.108069_bib16","doi-asserted-by":"crossref","first-page":"2818","DOI":"10.1109\/TMI.2020.2976825","article-title":"Deep spatial-temporal feature fusion from adaptive dynamic functional connectivity for MCI identification","volume":"39","author":"Li","year":"2020","journal-title":"IEEE Trans. Med. Imag."},{"issue":"8","key":"10.1016\/j.compbiomed.2024.108069_bib17","doi-asserted-by":"crossref","first-page":"2918","DOI":"10.1002\/hbm.23215","article-title":"Dynamic functional connectivity reveals altered variability in functional connectivity among patients with major depressive disorder","volume":"37","author":"Demirtas","year":"2016","journal-title":"Hum. Brain Mapp."},{"issue":"5","key":"10.1016\/j.compbiomed.2024.108069_bib18","doi-asserted-by":"crossref","first-page":"1746","DOI":"10.1109\/TMI.2019.2957097","article-title":"Multi-hypergraph learning-based brain functional connectivity analysis in fMRI data","volume":"39","author":"Xiao","year":"2020","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.compbiomed.2024.108069_bib19","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1016\/j.media.2016.03.003","article-title":"Hyper-connectivity of functional networks for brain disease diagnosis","volume":"32","author":"Jie","year":"2016","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compbiomed.2024.108069_bib20","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.media.2018.11.006","article-title":"Multimodal hyper-connectivity of functional networks using functionally-weighted LASSO for MCI classification","volume":"52","author":"Li","year":"2019","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compbiomed.2024.108069_bib21","article-title":"Deep fusion of multi-template using spatio-temporal weighted multi-hypergraph convolutional networks for brain disease analysis","author":"Liu","year":"2023","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.compbiomed.2024.108069_bib22","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2021.105039","article-title":"MDD-TSVM: a novel semisupervised-based method for major depressive disorder detection using electroencephalogram signals","volume":"140","author":"Lin","year":"2022","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2024.108069_bib23","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2022.105287","article-title":"Scale-free dynamics of microstate sequence in negative schizophrenia and depressive disorder","volume":"143","author":"Niu","year":"2022","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2024.108069_bib24","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2022.106320","article-title":"Classifying ASD based on time-series fMRI using spatial-temporal transformer","volume":"151","author":"Deng","year":"2022","journal-title":"Comput. Biol. Med."},{"issue":"6","key":"10.1016\/j.compbiomed.2024.108069_bib25","doi-asserted-by":"crossref","first-page":"1545","DOI":"10.1007\/s42235-022-00261-6","article-title":"Bionic artificial self-recovery enables autonomous health of machine","volume":"19","author":"Gao","year":"2022","journal-title":"J. Bionic Eng."},{"issue":"6","key":"10.1016\/j.compbiomed.2024.108069_bib26","doi-asserted-by":"crossref","first-page":"1830","DOI":"10.1007\/s42235-022-00228-7","article-title":"Multi-strategies boosted mutative crow search algorithm for global tasks: cases of continuous and discrete optimization","volume":"19","author":"Shan","year":"2022","journal-title":"J. Bionic Eng."},{"key":"10.1016\/j.compbiomed.2024.108069_bib27","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2022.105823","article-title":"MAMF-GCN: multi-scale adaptive multi-channel fusion deep graph convolutional network for predicting mental disorder","volume":"148","author":"Pan","year":"2022","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2024.108069_bib28","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2023.102828","article-title":"Dynamic weighted hypergraph convolutional network for brain functional connectome analysis","volume":"87","author":"Wang","year":"2023","journal-title":"Med. Image Anal."},{"issue":"1","key":"10.1016\/j.compbiomed.2024.108069_bib29","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1093\/psyrad\/kkac005","article-title":"The DIRECT consortium and the REST-meta-MDD project: towards neuroimaging biomarkers of major depressive disorder","volume":"2","author":"Chen","year":"2022","journal-title":"Psychoradiology"},{"issue":"18","key":"10.1016\/j.compbiomed.2024.108069_bib30","doi-asserted-by":"crossref","first-page":"9078","DOI":"10.1073\/pnas.1900390116","article-title":"Reduced default mode network functional connectivity in patients with recurrent major depressive disorder","volume":"116","author":"Yan","year":"2019","journal-title":"Proc. Natl. Acad. Sci. U. S. A."},{"key":"10.1016\/j.compbiomed.2024.108069_bib31","article-title":"DPARSF: a MATLAB toolbox for \"pipeline\" data analysis of resting-state fMRI","volume":"4","author":"Yan","year":"2010","journal-title":"Front. Syst. Neurosci."},{"issue":"3","key":"10.1016\/j.compbiomed.2024.108069_bib32","doi-asserted-by":"crossref","first-page":"339","DOI":"10.1007\/s12021-016-9299-4","article-title":"DPABI: data processing & analysis for (resting-state) brain imaging","volume":"14","author":"Yan","year":"2016","journal-title":"Neuroinformatics"},{"issue":"1","key":"10.1016\/j.compbiomed.2024.108069_bib33","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1006\/nimg.2001.0978","article-title":"Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain","volume":"15","author":"Tzourio-Mazoyer","year":"2002","journal-title":"Neuroimage"},{"issue":"2","key":"10.1016\/j.compbiomed.2024.108069_bib34","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1016\/j.braindev.2006.07.002","article-title":"Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI","volume":"29","author":"Zang","year":"2007","journal-title":"Brain Dev."},{"issue":"1","key":"10.1016\/j.compbiomed.2024.108069_bib35","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/j.jneumeth.2008.04.012","article-title":"An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF","volume":"172","author":"Zou","year":"2008","journal-title":"J. Neurosci. Methods"},{"issue":"1","key":"10.1016\/j.compbiomed.2024.108069_bib36","doi-asserted-by":"crossref","first-page":"394","DOI":"10.1016\/j.neuroimage.2003.12.030","article-title":"Regional homogeneity approach to fMRI data analysis","volume":"22","author":"Zang","year":"2004","journal-title":"Neuroimage"},{"issue":"5","key":"10.1016\/j.compbiomed.2024.108069_bib37","doi-asserted-by":"crossref","first-page":"1134","DOI":"10.1093\/cercor\/bhq190","article-title":"Decreased interhemispheric functional connectivity in autism","volume":"21","author":"Anderson","year":"2011","journal-title":"Cerebr. Cortex"},{"issue":"8","key":"10.1016\/j.compbiomed.2024.108069_bib38","doi-asserted-by":"crossref","first-page":"1862","DOI":"10.1093\/cercor\/bhr269","article-title":"Network centrality in the human functional connectome","volume":"22","author":"Zuo","year":"2012","journal-title":"Cerebr. Cortex"},{"year":"2015","series-title":"Adam: A Method for Stochastic Optimization","author":"Kingma","key":"10.1016\/j.compbiomed.2024.108069_bib39"},{"issue":"1","key":"10.1016\/j.compbiomed.2024.108069_bib40","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s12021-019-09418-x","article-title":"Fusion of ULS group constrained high- and low-order sparse functional connectivity networks for MCI classification","volume":"18","author":"Li","year":"2020","journal-title":"Neuroinformatics"},{"issue":"11","key":"10.1016\/j.compbiomed.2024.108069_bib41","doi-asserted-by":"crossref","first-page":"4256","DOI":"10.1002\/hbm.26343","article-title":"Addressing multi-site functional MRI heterogeneity through dual-expert collaborative learning for brain disease identification","volume":"44","author":"Fang","year":"2023","journal-title":"Hum. Brain Mapp."},{"key":"10.1016\/j.compbiomed.2024.108069_bib42","doi-asserted-by":"crossref","first-page":"3501","DOI":"10.1109\/TNSRE.2023.3309847","article-title":"Multi-scale dynamic graph learning for brain disorder detection with functional MRI","volume":"31","author":"Ma","year":"2023","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"key":"10.1016\/j.compbiomed.2024.108069_bib43","doi-asserted-by":"crossref","DOI":"10.3389\/fnins.2023.1126865","article-title":"Intelligent diagnosis of major depression disease based on multi-layer brain network","volume":"17","author":"Long","year":"2023","journal-title":"Front. Neurosci."},{"key":"10.1016\/j.compbiomed.2024.108069_bib44","doi-asserted-by":"crossref","DOI":"10.1038\/s41380-023-01977-5","article-title":"Functional connectivity signatures of major depressive disorder: machine learning analysis of two multicenter neuroimaging studies","author":"Gallo","year":"2023","journal-title":"Mol. Psychiatr."},{"key":"10.1016\/j.compbiomed.2024.108069_bib45","article-title":"Spatial-temporal data-augmentation-based functional brain network analysis for brain disorders identification","volume":"17","author":"Liu","year":"2023","journal-title":"Front. Neurosci."},{"issue":"6","key":"10.1016\/j.compbiomed.2024.108069_bib46","doi-asserted-by":"crossref","first-page":"2714","DOI":"10.1109\/JBHI.2022.3159031","article-title":"Multi-level functional connectivity fusion classification framework for brain disease diagnosis","volume":"26","author":"Liang","year":"2022","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"10.1016\/j.compbiomed.2024.108069_bib47","doi-asserted-by":"crossref","DOI":"10.3389\/fninf.2022.856175","article-title":"Adaptive multimodal neuroimage integration for major depression disorder detection","volume":"16","author":"Wang","year":"2022","journal-title":"Front. Neuroinf."},{"issue":"5","key":"10.1016\/j.compbiomed.2024.108069_bib48","doi-asserted-by":"crossref","first-page":"1227","DOI":"10.1109\/TMI.2018.2882189","article-title":"Novel effective connectivity inference using ultra-group constrained orthogonal forward regression and elastic multilayer perceptron classifier for MCI identification","volume":"38","author":"Li","year":"2018","journal-title":"IEEE Trans. Med. Imag."},{"issue":"7","key":"10.1016\/j.compbiomed.2024.108069_bib49","doi-asserted-by":"crossref","first-page":"1417","DOI":"10.1017\/S0033291713002031","article-title":"Short-term effects of escitalopram on regional brain function in first-episode drug-naive patients with major depressive disorder assessed by resting-state functional magnetic resonance imaging","volume":"44","author":"Wang","year":"2014","journal-title":"Psychol. Med."},{"key":"10.1016\/j.compbiomed.2024.108069_bib50","article-title":"Disrupted structural brain network organization behind depressive symptoms in major depressive disorder","volume":"11","author":"Liu","year":"2020","journal-title":"Front. Psychiatr."},{"issue":"10","key":"10.1016\/j.compbiomed.2024.108069_bib51","doi-asserted-by":"crossref","first-page":"1025","DOI":"10.30773\/pi.2021.0099","article-title":"Alterations in the occipital cortex of drug-naive adults with major depressive disorder: a surface-based analysis of surface area and cortical thickness","volume":"18","author":"Lee","year":"2021","journal-title":"Psychiatry Investig"},{"key":"10.1016\/j.compbiomed.2024.108069_bib52","doi-asserted-by":"crossref","DOI":"10.3389\/fnagi.2021.803080","article-title":"Global functional connectivity analysis indicating dysconnectivity of the hate circuit in major depressive disorder","volume":"13","author":"Pan","year":"2022","journal-title":"Front. Aging Neurosci."},{"key":"10.1016\/j.compbiomed.2024.108069_bib53","doi-asserted-by":"crossref","DOI":"10.1155\/2018\/5024520","article-title":"Neural basis of depression related to a dominant right hemisphere: a resting-state fMRI study","volume":"2018","author":"Li","year":"2018","journal-title":"Behav. Neurol."},{"issue":"11","key":"10.1016\/j.compbiomed.2024.108069_bib54","doi-asserted-by":"crossref","first-page":"1090","DOI":"10.1177\/0269881116661074","article-title":"Neuropsychological and neuroimaging evidence for the involvement of the frontal lobes in depression: 20 years on","volume":"30","author":"Goodwin","year":"2016","journal-title":"J. Psychopharmacol."},{"key":"10.1016\/j.compbiomed.2024.108069_bib55","article-title":"Functional and structural alterations in different durations of untreated illness in the frontal and parietal lobe in major depressive disorder","author":"Liu","year":"2023","journal-title":"Eur. Arch. Psychiatr. Clin. Neurosci."}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482524001537?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482524001537?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,5,10]],"date-time":"2024-05-10T06:58:33Z","timestamp":1715324313000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482524001537"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,3]]},"references-count":55,"alternative-id":["S0010482524001537"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2024.108069","relation":{},"ISSN":["0010-4825"],"issn-type":[{"type":"print","value":"0010-4825"}],"subject":[],"published":{"date-parts":[[2024,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Effective hyper-connectivity network construction and learning: Application to major depressive disorder identification","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2024.108069","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"108069"}}