{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,9]],"date-time":"2024-11-09T05:14:38Z","timestamp":1731129278745,"version":"3.28.0"},"reference-count":33,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T00:00:00Z","timestamp":1709251200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62072058","82073339"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2024,3]]},"DOI":"10.1016\/j.compbiomed.2024.107997","type":"journal-article","created":{"date-parts":[[2024,1,19]],"date-time":"2024-01-19T17:45:15Z","timestamp":1705686315000},"page":"107997","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["Contrastive learning-based histopathological features infer molecular subtypes and clinical outcomes of breast cancer from unannotated whole slide images"],"prefix":"10.1016","volume":"170","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-7158-913X","authenticated-orcid":false,"given":"Hui","family":"Liu","sequence":"first","affiliation":[]},{"given":"Yang","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Judong","family":"Luo","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1130","key":"10.1016\/j.compbiomed.2024.107997_b1","doi-asserted-by":"crossref","DOI":"10.1259\/bjr.20211033","article-title":"Understanding breast cancer as a global health concern","volume":"95","author":"Wilkinson","year":"2022","journal-title":"British J. Radiol."},{"issue":"1","key":"10.1016\/j.compbiomed.2024.107997_b2","doi-asserted-by":"crossref","first-page":"6367","DOI":"10.1038\/s41467-020-20030-5","article-title":"Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images","volume":"11","author":"Noorbakhsh","year":"2020","journal-title":"Nat. Commun."},{"issue":"10","key":"10.1016\/j.compbiomed.2024.107997_b3","doi-asserted-by":"crossref","first-page":"2056","DOI":"10.1158\/0008-5472.CAN-19-1629","article-title":"Computational staining of pathology images to study the tumor microenvironment in lung cancer","volume":"80","author":"Wang","year":"2020","journal-title":"Cancer Res."},{"issue":"1","key":"10.1016\/j.compbiomed.2024.107997_b4","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1016\/j.annonc.2021.09.007","article-title":"Improved breast cancer histological grading using deep learning","volume":"33","author":"Wang","year":"2022","journal-title":"Ann. Oncol."},{"issue":"7","key":"10.1016\/j.compbiomed.2024.107997_b5","doi-asserted-by":"crossref","first-page":"1054","DOI":"10.1038\/s41591-019-0462-y","article-title":"Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer","volume":"25","author":"Kather","year":"2019","journal-title":"Nat. Med."},{"issue":"6","key":"10.1016\/j.compbiomed.2024.107997_b6","doi-asserted-by":"crossref","first-page":"356","DOI":"10.1038\/s42256-020-0190-5","article-title":"Predicting tumour mutational burden from histopathological images using multiscale deep learning","volume":"2","author":"Jain","year":"2020","journal-title":"Nat. Mach. Intell."},{"issue":"1","key":"10.1016\/j.compbiomed.2024.107997_b7","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1016\/j.celrep.2018.03.086","article-title":"Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images","volume":"23","author":"Saltz","year":"2018","journal-title":"Cell Rep."},{"issue":"6","key":"10.1016\/j.compbiomed.2024.107997_b8","doi-asserted-by":"crossref","first-page":"555","DOI":"10.1038\/s41551-020-00682-w","article-title":"Data-efficient and weakly supervised computational pathology on whole-slide images","volume":"5","author":"Lu","year":"2021","journal-title":"Nat. Biomed. Eng."},{"key":"10.1016\/j.compbiomed.2024.107997_b9","doi-asserted-by":"crossref","unstructured":"Hongrun Zhang, Yanda Meng, Yitian Zhao, Yihong Qiao, Xiaoyun Yang, Sarah E. Coupland, Yalin Zheng, Dtfd-mil: Double-tier feature distillation multiple instance learning for histopathology whole slide image classification, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 18802\u201318812.","DOI":"10.1109\/CVPR52688.2022.01824"},{"key":"10.1016\/j.compbiomed.2024.107997_b10","unstructured":"Huisi Wu, Zhaoze Wang, Youyi Song, Lin Yang, Jing Qin, Cross-patch dense contrastive learning for semi-supervised segmentation of cellular nuclei in histopathologic images, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 11666\u201311675."},{"issue":"8","key":"10.1016\/j.compbiomed.2024.107997_b11","doi-asserted-by":"crossref","first-page":"1160","DOI":"10.1200\/JCO.2008.18.1370","article-title":"Supervised risk predictor of breast cancer based on intrinsic subtypes","volume":"27","author":"Parker","year":"2009","journal-title":"J. Clin. Oncol."},{"key":"10.1016\/j.compbiomed.2024.107997_b12","doi-asserted-by":"crossref","DOI":"10.7717\/peerj.4942","article-title":"Establishment of a 12-gene expression signature to predict colon cancer prognosis","volume":"6","author":"Sun","year":"2018","journal-title":"PeerJ"},{"issue":"27","key":"10.1016\/j.compbiomed.2024.107997_b13","doi-asserted-by":"crossref","first-page":"2817","DOI":"10.1056\/NEJMoa041588","article-title":"A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer","volume":"351","author":"Paik","year":"2004","journal-title":"N. Engl. J. Med."},{"issue":"11","key":"10.1016\/j.compbiomed.2024.107997_b14","doi-asserted-by":"crossref","first-page":"1829","DOI":"10.1200\/JCO.2009.24.4798","article-title":"Prediction of risk of distant recurrence using the 21-gene recurrence score in node-negative and node-positive postmenopausal patients with breast cancer treated with anastrozole or tamoxifen: a transatac study","volume":"28","author":"Dowsett","year":"2010","journal-title":"J. Clin. Oncol."},{"issue":"21","key":"10.1016\/j.compbiomed.2024.107997_b15","doi-asserted-by":"crossref","first-page":"2005","DOI":"10.1056\/NEJMoa1510764","article-title":"Prospective validation of a 21-gene expression assay in breast cancer","volume":"373","author":"Sparano","year":"2015","journal-title":"N. Engl. J. Med."},{"issue":"8","key":"10.1016\/j.compbiomed.2024.107997_b16","doi-asserted-by":"crossref","first-page":"789","DOI":"10.1038\/s43018-020-0087-6","article-title":"Pan-cancer image-based detection of clinically actionable genetic alterations","volume":"1","author":"Kather","year":"2020","journal-title":"Nat. Cancer"},{"issue":"1","key":"10.1016\/j.compbiomed.2024.107997_b17","doi-asserted-by":"crossref","first-page":"3877","DOI":"10.1038\/s41467-020-17678-4","article-title":"A deep learning model to predict RNA-seq expression of tumours from whole slide images","volume":"11","author":"Schmauch","year":"2020","journal-title":"Nat. Commun."},{"issue":"5","key":"10.1016\/j.compbiomed.2024.107997_b18","doi-asserted-by":"crossref","DOI":"10.1093\/bib\/bbac294","article-title":"Contrastive learning-based computational histopathology predict differential expression of cancer driver genes","volume":"23","author":"Huang","year":"2022","journal-title":"Brief. Bioinform."},{"year":"2020","series-title":"Improved baselines with momentum contrastive learning","author":"Chen","key":"10.1016\/j.compbiomed.2024.107997_b19"},{"key":"10.1016\/j.compbiomed.2024.107997_b20","doi-asserted-by":"crossref","unstructured":"Qianjiang Hu, Xiao Wang, Wei Hu, Guo-Jun Qi, Adco: Adversarial contrast for efficient learning of unsupervised representations from self-trained negative adversaries, in: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 1074\u20131083.","DOI":"10.1109\/CVPR46437.2021.00113"},{"key":"10.1016\/j.compbiomed.2024.107997_b21","series-title":"Proceedings of COMPSTAT\u20192010: 19th International Conference on Computational StatisticsParis France, August 22-27, 2010 Keynote, Invited and Contributed Papers","first-page":"177","article-title":"Large-scale machine learning with stochastic gradient descent","author":"Bottou","year":"2010"},{"year":"2014","series-title":"Adam: A method for stochastic optimization","author":"Kingma","key":"10.1016\/j.compbiomed.2024.107997_b22"},{"issue":"19","key":"10.1016\/j.compbiomed.2024.107997_b23","doi-asserted-by":"crossref","first-page":"5115","DOI":"10.1158\/0008-5472.CAN-21-0482","article-title":"Predicting molecular phenotypes from histopathology images: A transcriptome-wide expression\u2013morphology analysis in breast cancer","volume":"81","author":"Wang","year":"2021","journal-title":"Cancer Res."},{"issue":"3","key":"10.1016\/j.compbiomed.2024.107997_b24","doi-asserted-by":"crossref","first-page":"313","DOI":"10.1093\/ajcp\/104.3.313","article-title":"Ki-67 antigen expression in hepatocellular carcinoma using monoclonal antibody MIB1: A comparison with proliferating cell nuclear antigen","volume":"104","author":"Ng","year":"1995","journal-title":"Am. J. Clin. Pathol."},{"issue":"3","key":"10.1016\/j.compbiomed.2024.107997_b25","doi-asserted-by":"crossref","first-page":"351","DOI":"10.1111\/j.1440-1746.1995.tb01107.x","article-title":"A long-term survivor of ruptured hepatocellular carcinoma after hepatic resection","volume":"10","author":"Shirabe","year":"1995","journal-title":"J. Gastroenterol. Hepatol."},{"issue":"7","key":"10.1016\/j.compbiomed.2024.107997_b26","first-page":"10235","article-title":"Clinicopathological and prognostic significance of high Ki-67 labeling index in hepatocellular carcinoma patients: A meta-analysis","volume":"8","author":"Luo","year":"2015","journal-title":"Int. J. Clin. Exp. Med."},{"key":"10.1016\/j.compbiomed.2024.107997_b27","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s13058-021-01462-3","article-title":"ESR1 mutation as an emerging clinical biomarker in metastatic hormone receptor-positive breast cancer","volume":"23","author":"Brett","year":"2021","journal-title":"Breast Cancer Res."},{"key":"10.1016\/j.compbiomed.2024.107997_b28","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s12943-020-01305-3","article-title":"Targeting AURKA in cancer: molecular mechanisms and opportunities for cancer therapy","volume":"20","author":"Du","year":"2021","journal-title":"Mol. Cancer"},{"issue":"Suppl. 2","key":"10.1016\/j.compbiomed.2024.107997_b29","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1159\/000055396","article-title":"Biology of HER2 and its importance in breast cancer","volume":"61","author":"Yarden","year":"2001","journal-title":"Oncology"},{"key":"10.1016\/j.compbiomed.2024.107997_b30","series-title":"2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society","first-page":"1711","article-title":"Spatial-context-aware RNA-sequence prediction from head and neck cancer histopathology images","author":"Sharma","year":"2021"},{"issue":"1","key":"10.1016\/j.compbiomed.2024.107997_b31","first-page":"1","article-title":"DeepSurv: Personalized treatment recommender system using a Cox proportional hazards deep neural network","volume":"18","author":"Katzman","year":"2018","journal-title":"BMC Med. Rese. Methodol."},{"key":"10.1016\/j.compbiomed.2024.107997_b32","unstructured":"Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770\u2013778."},{"issue":"6294","key":"10.1016\/j.compbiomed.2024.107997_b33","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1126\/science.aaf2403","article-title":"Visualization and analysis of gene expression in tissue sections by spatial transcriptomics","volume":"353","author":"St\u00e5hl","year":"2016","journal-title":"Science"}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482524000817?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482524000817?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,11,8]],"date-time":"2024-11-08T16:56:02Z","timestamp":1731084962000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482524000817"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,3]]},"references-count":33,"alternative-id":["S0010482524000817"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2024.107997","relation":{},"ISSN":["0010-4825"],"issn-type":[{"type":"print","value":"0010-4825"}],"subject":[],"published":{"date-parts":[[2024,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Contrastive learning-based histopathological features infer molecular subtypes and clinical outcomes of breast cancer from unannotated whole slide images","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2024.107997","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2024 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107997"}}