{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,22]],"date-time":"2024-07-22T19:56:16Z","timestamp":1721678176156},"reference-count":53,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2024,1]]},"DOI":"10.1016\/j.compbiomed.2023.107725","type":"journal-article","created":{"date-parts":[[2023,11,22]],"date-time":"2023-11-22T08:28:39Z","timestamp":1700641719000},"page":"107725","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":1,"special_numbering":"C","title":["Densely connected convolutional networks for ultrasound image based lesion segmentation"],"prefix":"10.1016","volume":"168","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-8335-1652","authenticated-orcid":false,"given":"Jinlian","family":"Ma","sequence":"first","affiliation":[]},{"given":"Dexing","family":"Kong","sequence":"additional","affiliation":[]},{"given":"Fa","family":"Wu","sequence":"additional","affiliation":[]},{"given":"Lingyun","family":"Bao","sequence":"additional","affiliation":[]},{"given":"Jing","family":"Yuan","sequence":"additional","affiliation":[]},{"given":"Yusheng","family":"Liu","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compbiomed.2023.107725_b1","series-title":"Thyroid cancer. Information available at","author":"National Cancer Institute","year":"2020"},{"key":"10.1016\/j.compbiomed.2023.107725_b2","series-title":"Breast cancer. Information available at","author":"National Cancer Institute","year":"2020"},{"issue":"5","key":"10.1016\/j.compbiomed.2023.107725_b3","doi-asserted-by":"crossref","first-page":"1941","DOI":"10.1210\/jcem.87.5.8504","article-title":"Risk of malignancy in nonpalpable thyroid nodules: Predictive value of ultrasound and color-Doppler features","volume":"87","author":"Papini","year":"2002","journal-title":"J. Clin. Endocrinol. Metabol."},{"key":"10.1016\/j.compbiomed.2023.107725_b4","series-title":"The Essential Physics of Medical Imaging","author":"Bushberg","year":"2011"},{"issue":"5","key":"10.1016\/j.compbiomed.2023.107725_b5","doi-asserted-by":"crossref","first-page":"617","DOI":"10.1016\/j.ultrasmedbio.2006.01.013","article-title":"Quantitative analyses of sonographic images of the parotid gland in patients with Sj\u00f6gren\u2019s syndrome","volume":"32","author":"Chikui","year":"2006","journal-title":"Ultrasound Med. Biol."},{"issue":"10","key":"10.1016\/j.compbiomed.2023.107725_b6","doi-asserted-by":"crossref","first-page":"3494","DOI":"10.1016\/j.patcog.2010.04.023","article-title":"Application of support-vector-machine-based method for feature selection and classification of thyroid nodules in ultrasound images","volume":"43","author":"Chang","year":"2010","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.compbiomed.2023.107725_b7","doi-asserted-by":"crossref","first-page":"700","DOI":"10.1016\/j.patcog.2016.09.030","article-title":"Semi-supervised learning and graph cuts for consensus based medical image segmentation","volume":"63","author":"Mahapatra","year":"2017","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.compbiomed.2023.107725_b8","doi-asserted-by":"crossref","first-page":"367","DOI":"10.1016\/j.patcog.2017.11.019","article-title":"Weighted variational model for selective image segmentation with application to medical images","volume":"76","author":"Liu","year":"2018","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.compbiomed.2023.107725_b9","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1016\/j.pbiomolbio.2019.11.012","article-title":"Supervised and unsupervised algorithms for bioinformatics and data science","volume":"151","author":"Sohail","year":"2020","journal-title":"Progress Biophys. Mol. Biol."},{"issue":"4","key":"10.1016\/j.compbiomed.2023.107725_b10","doi-asserted-by":"crossref","first-page":"519","DOI":"10.1109\/TITB.2008.2007192","article-title":"Active contours guided by echogenicity and texture for delineation of thyroid nodules in ultrasound images","volume":"13","author":"Savelonas","year":"2009","journal-title":"IEEE Trans. Inf. Technol. Biomed."},{"issue":"6","key":"10.1016\/j.compbiomed.2023.107725_b11","doi-asserted-by":"crossref","first-page":"2028","DOI":"10.1016\/j.patcog.2010.01.002","article-title":"Probability density difference-based active contour for ultrasound image segmentation","volume":"43","author":"Bo","year":"2010","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.compbiomed.2023.107725_b12","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1016\/j.asoc.2015.11.035","article-title":"Automated delineation of thyroid nodules in ultrasound images using spatial neutrosophic clustering and level set","volume":"40","author":"Koundal","year":"2016","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.compbiomed.2023.107725_b13","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1016\/j.patcog.2018.01.032","article-title":"Automatic initialization of active contours and level set method in ultrasound images of breast abnormalities","volume":"79","author":"Rodtook","year":"2018","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.compbiomed.2023.107725_b14","doi-asserted-by":"crossref","first-page":"340","DOI":"10.1016\/j.patcog.2018.02.012","article-title":"Automatic breast ultrasound image segmentation: A survey","volume":"79","author":"Xian","year":"2018","journal-title":"Pattern Recognit."},{"issue":"6","key":"10.1016\/j.compbiomed.2023.107725_b15","doi-asserted-by":"crossref","first-page":"1348","DOI":"10.1109\/TBME.2010.2041003","article-title":"Thyroid segmentation and volume estimation in ultrasound images","volume":"57","author":"Chang","year":"2010","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.compbiomed.2023.107725_b16","doi-asserted-by":"crossref","unstructured":"D. Selvathi, V. Sharnitha, Thyroid classification and segmentation in ultrasound images using machine learning algorithms, in: International Conference on Signal Processing, Communication, Computing and Networking Technologies, ICSCCN, 2011, pp. 836\u2013841.","DOI":"10.1109\/ICSCCN.2011.6024666"},{"issue":"6","key":"10.1016\/j.compbiomed.2023.107725_b17","doi-asserted-by":"crossref","first-page":"587","DOI":"10.1016\/j.media.2013.04.001","article-title":"A supervised learning framework of statistical shape and probability priors for automatic prostate segmentation in ultrasound images","volume":"17","author":"Ghose","year":"2013","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compbiomed.2023.107725_b18","series-title":"Advances in Neural Information Processing Systems","first-page":"1097","article-title":"Imagenet classification with deep convolutional neural networks","author":"Krizhevsky","year":"2012"},{"key":"10.1016\/j.compbiomed.2023.107725_b19","doi-asserted-by":"crossref","first-page":"60445","DOI":"10.1109\/ACCESS.2018.2875525","article-title":"A novel model based on AdaBoost and deep CNN for vehicle classification","volume":"6","author":"Chen","year":"2018","journal-title":"IEEE Access"},{"issue":"6","key":"10.1016\/j.compbiomed.2023.107725_b20","doi-asserted-by":"crossref","first-page":"1137","DOI":"10.1109\/TPAMI.2016.2577031","article-title":"Faster R-CNN: Towards real-time object detection with region proposal networks","volume":"39","author":"Ren","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"11","key":"10.1016\/j.compbiomed.2023.107725_b21","doi-asserted-by":"crossref","first-page":"3212","DOI":"10.1109\/TNNLS.2018.2876865","article-title":"Object detection with deep learning: A review","volume":"30","author":"Zhao","year":"2019","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.compbiomed.2023.107725_b22","doi-asserted-by":"crossref","unstructured":"Z. Liu, X. Li, P. Luo, C.-C. Loy, X. Tang, Semantic image segmentation via deep parsing network, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1377\u20131385.","DOI":"10.1109\/ICCV.2015.162"},{"issue":"4","key":"10.1016\/j.compbiomed.2023.107725_b23","doi-asserted-by":"crossref","first-page":"602","DOI":"10.1109\/LGRS.2018.2794545","article-title":"Automatic water-body segmentation from high-resolution satellite images via deep networks","volume":"15","author":"Miao","year":"2018","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"10.1016\/j.compbiomed.2023.107725_b24","first-page":"1","article-title":"COVID-19 variants and transfer learning for the emerging stringency indices","author":"Sohail","year":"2022","journal-title":"Neural Process. Lett."},{"key":"10.1016\/j.compbiomed.2023.107725_b25","doi-asserted-by":"crossref","DOI":"10.1016\/j.sintl.2022.100202","article-title":"Explainable machine learning of the breast cancer staging for designing smart biomarker sensors","volume":"3","author":"Idrees","year":"2022","journal-title":"Sensors Int."},{"issue":"2","key":"10.1016\/j.compbiomed.2023.107725_b26","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1007\/s40571-022-00490-w","article-title":"XAI hybrid multi-staged algorithm for routine & quantum boosted oncological medical imaging","volume":"10","author":"Sohail","year":"2023","journal-title":"Comput. Part. Mech."},{"key":"10.1016\/j.compbiomed.2023.107725_b27","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1016\/j.neuroimage.2014.12.061","article-title":"Deep convolutional neural networks for multi-modality isointense infant brain image segmentation","volume":"108","author":"Zhang","year":"2015","journal-title":"NeuroImage"},{"issue":"5","key":"10.1016\/j.compbiomed.2023.107725_b28","doi-asserted-by":"crossref","first-page":"1252","DOI":"10.1109\/TMI.2016.2548501","article-title":"Automatic segmentation of MR brain images with a convolutional neural network","volume":"35","author":"Moeskops","year":"2016","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"99","key":"10.1016\/j.compbiomed.2023.107725_b29","first-page":"2319","article-title":"Auto-context convolutional neural network (Auto-Net) for brain extraction in magnetic resonance imaging","volume":"11","author":"Ssm","year":"2017","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"9","key":"10.1016\/j.compbiomed.2023.107725_b30","doi-asserted-by":"crossref","first-page":"1876","DOI":"10.1109\/TMI.2017.2695227","article-title":"Automatic skin lesion segmentation using deep fully convolutional networks with Jaccard distance","volume":"36","author":"Yading","year":"2017","journal-title":"IEEE Trans. Med. Imaging"},{"key":"10.1016\/j.compbiomed.2023.107725_b31","doi-asserted-by":"crossref","first-page":"90","DOI":"10.1016\/j.patcog.2018.11.009","article-title":"Dual-force convolutional neural networks for accurate brain tumor segmentation","volume":"88","author":"Chen","year":"2019","journal-title":"Pattern Recognit."},{"issue":"4","key":"10.1016\/j.compbiomed.2023.107725_b32","doi-asserted-by":"crossref","first-page":"1077","DOI":"10.1109\/TMI.2015.2508280","article-title":"Deformable MR prostate segmentation via deep feature learning and sparse patch matching","volume":"35","author":"Guo","year":"2016","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"5","key":"10.1016\/j.compbiomed.2023.107725_b33","doi-asserted-by":"crossref","first-page":"1229","DOI":"10.1109\/TMI.2016.2528821","article-title":"Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation","volume":"35","author":"Brosch","year":"2016","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"3","key":"10.1016\/j.compbiomed.2023.107725_b34","doi-asserted-by":"crossref","first-page":"781","DOI":"10.1109\/TMI.2016.2628084","article-title":"Adaptive estimation of active contour parameters using convolutional neural networks and texture analysis","volume":"36","author":"Hoogi","year":"2017","journal-title":"IEEE Trans. Med. Imaging"},{"issue":"10","key":"10.1016\/j.compbiomed.2023.107725_b35","doi-asserted-by":"crossref","first-page":"1977","DOI":"10.3390\/sym14101977","article-title":"A comparative study of the genetic deep learning image segmentation algorithms","volume":"14","author":"Wang","year":"2022","journal-title":"Symmetry"},{"issue":"5","key":"10.1016\/j.compbiomed.2023.107725_b36","doi-asserted-by":"crossref","first-page":"1678","DOI":"10.1002\/mp.12134","article-title":"Cascade convolutional neural networks for automatic detection of thyroid nodules in ultrasound images","volume":"44","author":"Ma","year":"2017","journal-title":"Med. Phys."},{"issue":"2","key":"10.1016\/j.compbiomed.2023.107725_b37","doi-asserted-by":"crossref","first-page":"82","DOI":"10.37015\/AUDT.2018.180804","article-title":"Deep learning models for segmentation of lesion based on ultrasound images","volume":"2","author":"Ma","year":"2018","journal-title":"Adv. Ultrasound Diagn. Ther."},{"key":"10.1016\/j.compbiomed.2023.107725_b38","doi-asserted-by":"crossref","first-page":"186","DOI":"10.1016\/j.media.2019.07.005","article-title":"Accurate and robust deep learning-based segmentation of the prostate clinical target volume in ultrasound images","volume":"57","author":"Karimi","year":"2019","journal-title":"Med. Image Anal."},{"issue":"11","key":"10.1016\/j.compbiomed.2023.107725_b39","doi-asserted-by":"crossref","first-page":"2278","DOI":"10.1109\/5.726791","article-title":"Gradient-based learning applied to document recognition","volume":"86","author":"Lecun","year":"1998","journal-title":"Proc. IEEE"},{"key":"10.1016\/j.compbiomed.2023.107725_b40","article-title":"Very deep convolutional networks for large-scale image recognition","author":"Simonyan","year":"2014","journal-title":"Computer Science (2014)"},{"key":"10.1016\/j.compbiomed.2023.107725_b41","series-title":"2015 IEEE Conference on Computer Vision and Pattern Recognition","first-page":"1","article-title":"Going deeper with convolutions","author":"Szegedy","year":"2015"},{"issue":"4","key":"10.1016\/j.compbiomed.2023.107725_b42","doi-asserted-by":"crossref","first-page":"640","DOI":"10.1109\/TPAMI.2016.2572683","article-title":"Fully convolutional networks for semantic segmentation","volume":"39","author":"Shelhamer","year":"2014","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.compbiomed.2023.107725_b43","doi-asserted-by":"crossref","unstructured":"K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, in: IEEE Conference on Computer Vision and Pattern Recognition, CVPR, 2015, pp. 770\u2013778.","DOI":"10.1109\/CVPR.2016.90"},{"key":"10.1016\/j.compbiomed.2023.107725_b44","unstructured":"F.J. Huang, Y. LeCun, Large-scale learning with svm and convolutional for generic object categorization, in: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006, pp. 284\u2013291."},{"key":"10.1016\/j.compbiomed.2023.107725_b45","doi-asserted-by":"crossref","unstructured":"G. Huang, Z. Liu, L.V.D. Maaten, K.Q. Weinberger, Densely Connected Convolutional Networks, in: IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2261\u20132269.","DOI":"10.1109\/CVPR.2017.243"},{"key":"10.1016\/j.compbiomed.2023.107725_b46","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1016\/j.ultras.2016.09.011","article-title":"A pre-trained convolutional neural network based method for thyroid nodule diagnosis","volume":"73","author":"Ma","year":"2017","journal-title":"Ultrasonics"},{"key":"10.1016\/j.compbiomed.2023.107725_b47","series-title":"Batch normalization: Accelerating deep network training by reducing internal covariate shift","first-page":"448","author":"Ioffe","year":"2015"},{"key":"10.1016\/j.compbiomed.2023.107725_b48","unstructured":"A.L. Maas, A.Y. Hannun, A.Y. Ng, Rectifier nonlinearities improve neural network acoustic models, in: ICML Workshop on Deep Learning for Audio, Speech and Language Processing, 2013."},{"issue":"11","key":"10.1016\/j.compbiomed.2023.107725_b49","doi-asserted-by":"crossref","first-page":"1895","DOI":"10.1007\/s11548-017-1649-7","article-title":"Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks","volume":"12","author":"Ma","year":"2017","journal-title":"Int. J. Comput. Assist. Radiol. Surg."},{"key":"10.1016\/j.compbiomed.2023.107725_b50","first-page":"1","article-title":"Imagenet large scale visual recognition challenge","author":"Russakovsky","year":"2014","journal-title":"Int. J. Comput. Vis."},{"issue":"2","key":"10.1016\/j.compbiomed.2023.107725_b51","doi-asserted-by":"crossref","first-page":"1327","DOI":"10.1109\/TCBB.2022.3167090","article-title":"Prediction of enhancers in dna sequence data using a hybrid cnn-dlstm model","volume":"20","author":"Kaur","year":"2022","journal-title":"IEEE\/ACM Trans. Comput. Biol. Bioinform."},{"key":"10.1016\/j.compbiomed.2023.107725_b52","doi-asserted-by":"crossref","unstructured":"Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B. Girshick, S. Guadarrama, T. Darrell, Caffe: Convolutional architecture for fast feature embedding, in: Proceedings of the 22nd ACM International Conference on Multimedia, 2014, pp. 675\u2013678.","DOI":"10.1145\/2647868.2654889"},{"key":"10.1016\/j.compbiomed.2023.107725_b53","series-title":"IEEE Conference on Computer Vision and Pattern Recognition","first-page":"6230","article-title":"Pyramid scene parsing network","author":"Zhao","year":"2017"}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482523011903?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482523011903?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2024,1,31]],"date-time":"2024-01-31T05:37:30Z","timestamp":1706679450000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482523011903"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,1]]},"references-count":53,"alternative-id":["S0010482523011903"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2023.107725","relation":{},"ISSN":["0010-4825"],"issn-type":[{"value":"0010-4825","type":"print"}],"subject":[],"published":{"date-parts":[[2024,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Densely connected convolutional networks for ultrasound image based lesion segmentation","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2023.107725","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107725"}}