{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,1,9]],"date-time":"2025-01-09T05:32:43Z","timestamp":1736400763630,"version":"3.32.0"},"reference-count":47,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/legal\/tdmrep-license"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,9,1]],"date-time":"2023-09-01T00:00:00Z","timestamp":1693526400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2023,9]]},"DOI":"10.1016\/j.compbiomed.2023.107315","type":"journal-article","created":{"date-parts":[[2023,8,8]],"date-time":"2023-08-08T06:18:50Z","timestamp":1691475530000},"page":"107315","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["Effective fall detection and post-fall breath rate tracking using a low-cost CW Doppler radar sensor"],"prefix":"10.1016","volume":"164","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-6771-7001","authenticated-orcid":false,"given":"Ritesh Chandra","family":"Tewari","sequence":"first","affiliation":[]},{"given":"Sandeep","family":"Sharma","sequence":"additional","affiliation":[]},{"given":"Aurobinda","family":"Routray","sequence":"additional","affiliation":[]},{"given":"Jhareswar","family":"Maiti","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"1","key":"10.1016\/j.compbiomed.2023.107315_bib1","first-page":"22","article-title":"Population aging: facts, challenges, and responses","volume":"41","author":"Bloom","year":"2011","journal-title":"Benefit. Compensat. Int."},{"issue":"37","key":"10.1016\/j.compbiomed.2023.107315_bib2","doi-asserted-by":"crossref","first-page":"993","DOI":"10.15585\/mmwr.mm6537a2","article-title":"Falls and fall injuries among adults aged 65 years\u2014United States, 2014","volume":"65","author":"Bergen","year":"2016","journal-title":"MMWR (Morb. Mortal. Wkly. Rep.)"},{"year":"2007","author":"Yoshida-Intern","series-title":"A Global Report on Falls Prevention Epidemiology of Falls","key":"10.1016\/j.compbiomed.2023.107315_bib3"},{"issue":"5","key":"10.1016\/j.compbiomed.2023.107315_bib4","doi-asserted-by":"crossref","first-page":"995","DOI":"10.1109\/TNSRE.2019.2911602","article-title":"A patient-specific single sensor iot-based wearable fall prediction and detection system","volume":"27","author":"Saadeh","year":"2019","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"issue":"17","key":"10.1016\/j.compbiomed.2023.107315_bib5","doi-asserted-by":"crossref","first-page":"6733","DOI":"10.1109\/JSEN.2016.2585667","article-title":"A wearable fall detector for elderly people based on ahrs and barometric sensor","volume":"16","author":"Pierleoni","year":"2016","journal-title":"IEEE Sensor. J."},{"key":"10.1016\/j.compbiomed.2023.107315_bib6","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2020.114226","article-title":"A multimodal approach using deep learning for fall detection","volume":"168","author":"Galvao","year":"2021","journal-title":"Expert Syst. Appl."},{"issue":"5","key":"10.1016\/j.compbiomed.2023.107315_bib7","doi-asserted-by":"crossref","first-page":"5566","DOI":"10.1016\/j.eswa.2011.11.061","article-title":"A system for ubiquitous fall monitoring at home via a wireless sensor network and a wearable mote. 11","volume":"39","author":"Paoli","year":"2012","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.compbiomed.2023.107315_bib8","doi-asserted-by":"crossref","first-page":"280","DOI":"10.1016\/j.eswa.2017.06.011","article-title":"Detecting unseen falls from wearable devices using channel-wise ensemble of autoencoders","volume":"87","author":"Khan","year":"2017","journal-title":"Expert Syst. Appl."},{"issue":"2","key":"10.1016\/j.compbiomed.2023.107315_bib9","doi-asserted-by":"crossref","first-page":"511","DOI":"10.1109\/TMC.2016.2557795","article-title":"Rt-fall: a real-time and contactless fall detection system with commodity wifi devices","volume":"16","author":"Wang","year":"2016","journal-title":"IEEE Trans. Mobile Comput."},{"issue":"10","key":"10.1016\/j.compbiomed.2023.107315_bib10","doi-asserted-by":"crossref","first-page":"6842","DOI":"10.1109\/TII.2021.3049342","article-title":"Contactless fall detection using time-frequency analysis and convolutional neural networks","volume":"17","author":"Sadreazami","year":"2021","journal-title":"IEEE Trans. Ind. Inf."},{"issue":"17","key":"10.1016\/j.compbiomed.2023.107315_bib11","doi-asserted-by":"crossref","first-page":"6733","DOI":"10.1109\/JSEN.2016.2585667","article-title":"A wearable fall detector for elderly people based on ahrs and barometric sensor","volume":"16","author":"Pierleoni","year":"2016","journal-title":"IEEE Sensor. J."},{"key":"10.1016\/j.compbiomed.2023.107315_bib12","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2022.112104","article-title":"Accelerometer-based human fall detection using sparrow search algorithm and back propagation neural network","volume":"204","author":"Wang","year":"2022","journal-title":"Measurement"},{"issue":"2","key":"10.1016\/j.compbiomed.2023.107315_bib13","doi-asserted-by":"crossref","first-page":"149","DOI":"10.3233\/AIS-160369","article-title":"Camera-based fall detection using ' real-world versus simulated data: how far are we from the solution?","volume":"8","author":"Debard","year":"2016","journal-title":"J. Ambient Intell. Smart Environ."},{"issue":"1","key":"10.1016\/j.compbiomed.2023.107315_bib14","doi-asserted-by":"crossref","first-page":"2471","DOI":"10.1038\/s41598-021-81115-9","article-title":"An eight-camera fall detection system using human fall pattern recognition via machine learning by a low-cost android box","volume":"11","author":"Shu","year":"2021","journal-title":"Sci. Rep."},{"issue":"5","key":"10.1016\/j.compbiomed.2023.107315_bib15","doi-asserted-by":"crossref","first-page":"2061","DOI":"10.1109\/TMTT.2013.2247619","article-title":"Analysis of an indoor biomedical radar-based system for health monitoring","volume":"61","author":"Mercuri","year":"2013","journal-title":"IEEE Trans. Microw. Theor. Tech."},{"issue":"22","key":"10.1016\/j.compbiomed.2023.107315_bib16","doi-asserted-by":"crossref","first-page":"13364","DOI":"10.1109\/JSEN.2020.3006918","article-title":"A millimeter-wave radar-based fall detection method using line kernel convolutional neural network","volume":"20","author":"Wang","year":"2020","journal-title":"IEEE Sensor. J."},{"key":"10.1016\/j.compbiomed.2023.107315_bib17","first-page":"1","article-title":"A convolution neural network approach for fall detection based on adaptive channel selection of uwb radar signals","author":"Wang","year":"2022","journal-title":"Neural Comput. Appl."},{"issue":"3","key":"10.1016\/j.compbiomed.2023.107315_bib18","doi-asserted-by":"crossref","first-page":"1686","DOI":"10.1109\/TMTT.2022.3142142","article-title":"Hybrid continuous-wave and self-injection-locking monopulse radar for posture and fall detection","volume":"70","author":"Su","year":"2022","journal-title":"IEEE Trans. Microw. Theor. Tech."},{"issue":"15","key":"10.1016\/j.compbiomed.2023.107315_bib19","doi-asserted-by":"crossref","first-page":"16969","DOI":"10.1109\/JSEN.2021.3079835","article-title":"Elderly fall detection with vital signs monitoring using cw Doppler radar","volume":"21","author":"Hanifi","year":"2021","journal-title":"IEEE Sensor. J."},{"key":"10.1016\/j.compbiomed.2023.107315_bib20","series-title":"2012 9th European Radar Conference","first-page":"202","article-title":"Automatic in-door fall detection based on microwave radar measurements","author":"Karsmakers","year":"2012"},{"key":"10.1016\/j.compbiomed.2023.107315_bib21","series-title":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","first-page":"713","article-title":"Radar-based fall detection exploiting time-frequency features","author":"Rivera","year":"2014"},{"issue":"9","key":"10.1016\/j.compbiomed.2023.107315_bib22","doi-asserted-by":"crossref","first-page":"1181","DOI":"10.1049\/iet-rsn.2015.0084","article-title":"Features for micro-Doppler based activity classification","volume":"9","author":"Bjorklund","year":"2015","journal-title":"IET Radar, Sonar Navig."},{"key":"10.1016\/j.compbiomed.2023.107315_bib23","doi-asserted-by":"crossref","first-page":"538","DOI":"10.1117\/12.607176","article-title":"Application of a continuous wave radar for human gait recognition","volume":"5809","author":"Otero","year":"2005","journal-title":"Signal Process. Sensor Fusion Target Recognit. XIV"},{"issue":"6","key":"10.1016\/j.compbiomed.2023.107315_bib24","doi-asserted-by":"crossref","first-page":"1448","DOI":"10.1016\/j.sigpro.2010.08.013","article-title":"A new approach ' for classification of human gait based on time-frequency feature representations","volume":"91","author":"Orovic","year":"2011","journal-title":"Signal Process."},{"issue":"5","key":"10.1016\/j.compbiomed.2023.107315_bib25","doi-asserted-by":"crossref","first-page":"1328","DOI":"10.1109\/TGRS.2009.2012849","article-title":"Human activity classification based on micro-Doppler signatures using a support vector machine","volume":"47","author":"Kim","year":"2009","journal-title":"IEEE Trans. Geosci. Rem. Sens."},{"issue":"3","key":"10.1016\/j.compbiomed.2023.107315_bib26","first-page":"865","article-title":"Doppler radar fall activity detection using the wavelet transform","volume":"62","author":"Su","year":"2014","journal-title":"IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng."},{"issue":"2","key":"10.1016\/j.compbiomed.2023.107315_bib27","doi-asserted-by":"crossref","first-page":"164","DOI":"10.1049\/iet-rsn.2014.0250","article-title":"Radar-based fall detection based on Doppler time\u2013frequency signatures for assisted living","volume":"9","author":"Wu","year":"2015","journal-title":"IET Radar, Sonar Navig."},{"issue":"16","key":"10.1016\/j.compbiomed.2023.107315_bib28","doi-asserted-by":"crossref","first-page":"17995","DOI":"10.1109\/JSEN.2021.3084241","article-title":"A dual generation adversarial network for human motion detection using micro-Doppler signatures","volume":"21","author":"Lang","year":"2021","journal-title":"IEEE Sensor. J."},{"issue":"22","key":"10.1016\/j.compbiomed.2023.107315_bib29","doi-asserted-by":"crossref","first-page":"7561","DOI":"10.1109\/JSEN.2017.2760911","article-title":"Fall detection utilizing frequency distribution trajectory by microwave Doppler sensor","volume":"17","author":"Shiba","year":"2017","journal-title":"IEEE Sensor. J."},{"issue":"20","key":"10.1016\/j.compbiomed.2023.107315_bib30","doi-asserted-by":"crossref","first-page":"8979","DOI":"10.1109\/JSEN.2018.2872894","article-title":"Magnetic and radar sensing for multimodal remote health monitoring","volume":"19","author":"Li","year":"2018","journal-title":"IEEE Sensor. J."},{"issue":"2","key":"10.1016\/j.compbiomed.2023.107315_bib31","doi-asserted-by":"crossref","first-page":"581","DOI":"10.1109\/TMC.2016.2557792","article-title":"Wifall: device-free fall detection by wireless networks","volume":"16","author":"Wang","year":"2016","journal-title":"IEEE Trans. Mobile Comput."},{"issue":"9","key":"10.1016\/j.compbiomed.2023.107315_bib32","doi-asserted-by":"crossref","first-page":"5072","DOI":"10.1109\/JSEN.2020.2967100","article-title":"Deep learning radar design for breathing and fall detection","volume":"20","author":"Bhattacharya","year":"2020","journal-title":"IEEE Sensor. J."},{"key":"10.1016\/j.compbiomed.2023.107315_bib33","series-title":"2016 IEEE Radar Conference (RadarConf)","first-page":"1","article-title":"Radar fall motion detection using deep learning","author":"Jokanovic","year":"2016"},{"key":"10.1016\/j.compbiomed.2023.107315_bib34","series-title":"2017 IEEE Radar Conference (RadarConf)","first-page":"819","article-title":"Range-Doppler radar sensor fusion for fall detection","author":"Erol","year":"2017"},{"key":"10.1016\/j.compbiomed.2023.107315_bib35","series-title":"2018 IEEE International Conference on Computational Electromagnetics (ICCEM)","first-page":"1","article-title":"Transfer learning for human activities classification using micro-Doppler spectrograms","author":"Du","year":"2018"},{"issue":"1","key":"10.1016\/j.compbiomed.2023.107315_bib36","doi-asserted-by":"crossref","first-page":"180","DOI":"10.1109\/TAES.2017.2740098","article-title":"Fall detection using deep learning ' in range-Doppler radars","volume":"54","author":"Jokanovic","year":"2017","journal-title":"IEEE Trans. Aero. Electron. Syst."},{"key":"10.1016\/j.compbiomed.2023.107315_bib37","series-title":"2017 IEEE Sensors","first-page":"1","article-title":"Multisensor data fusion for human activities classification and fall detection","author":"Li","year":"2017"},{"issue":"9","key":"10.1016\/j.compbiomed.2023.107315_bib38","doi-asserted-by":"crossref","first-page":"8648","DOI":"10.1109\/JSEN.2022.3156762","article-title":"Activity classification based on feature fusion of fmcw radar human motion micro-Doppler signatures","volume":"22","author":"Abdu","year":"2022","journal-title":"IEEE Sensor. J."},{"issue":"3","key":"10.1016\/j.compbiomed.2023.107315_bib39","doi-asserted-by":"crossref","first-page":"1191","DOI":"10.1109\/JSEN.2019.2946095","article-title":"Bi-lstm network for multimodal continuous human activity recognition and fall detection","volume":"20","author":"Li","year":"2019","journal-title":"IEEE Sensor. J."},{"key":"10.1016\/j.compbiomed.2023.107315_bib40","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2022.110870","article-title":"Fall detection system based on infrared array sensor and multi-dimensional feature fusion","volume":"192","author":"Yang","year":"2022","journal-title":"Measurement"},{"issue":"5","key":"10.1016\/j.compbiomed.2023.107315_bib41","doi-asserted-by":"crossref","first-page":"425","DOI":"10.1049\/iet-rsn.2013.0165","article-title":"Classification of human motions using empirical mode decomposition of human micro-Doppler signatures","volume":"8","author":"Fairchild","year":"2014","journal-title":"IET Radar, Sonar Navig."},{"issue":"1","key":"10.1016\/j.compbiomed.2023.107315_bib42","first-page":"197","article-title":"Fall detection using standoff radar-based sensing and deep convolutional neural network","volume":"67","author":"Sadreazami","year":"2019","journal-title":"IEEE Trans. Circuits Syst. II: Expr. Briefs"},{"key":"10.1016\/j.compbiomed.2023.107315_bib43","series-title":"2018 IEEE Radar Conference (radarConf18)","first-page":"612","article-title":"Diversified radar micro-Doppler simulations as training data for deep residual neural networks","author":"Seyfioglu","year":"2018"},{"issue":"13","key":"10.1016\/j.compbiomed.2023.107315_bib44","doi-asserted-by":"crossref","first-page":"13177","DOI":"10.1109\/JSEN.2022.3177173","article-title":"Design of a multistage radar-based human fall detection system","volume":"22","author":"Lu","year":"2022","journal-title":"IEEE Sensor. J."},{"issue":"10","key":"10.1016\/j.compbiomed.2023.107315_bib45","doi-asserted-by":"crossref","first-page":"7933","DOI":"10.1007\/s00521-022-06886-2","article-title":"Data portability for activities of daily living and fall detection in different environments using radar micro-Doppler","volume":"34","author":"Shah","year":"2022","journal-title":"Neural Comput. Appl."},{"issue":"9","key":"10.1016\/j.compbiomed.2023.107315_bib46","doi-asserted-by":"crossref","first-page":"8111","DOI":"10.1109\/JIOT.2022.3229462","article-title":"Lightweight deep learning model for radar-based fall detection with metric learning","volume":"10","author":"Ou","year":"2023","journal-title":"IEEE Internet Things J."},{"issue":"11","key":"10.1016\/j.compbiomed.2023.107315_bib47","doi-asserted-by":"crossref","first-page":"10024","DOI":"10.1109\/JIOT.2023.3235808","article-title":"Sparsity-based human activity recognition with point net using a portable fmcw radar","volume":"10","author":"Ding","year":"2023","journal-title":"IEEE Internet Things J."}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482523007801?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482523007801?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2025,1,9]],"date-time":"2025-01-09T00:57:15Z","timestamp":1736384235000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482523007801"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,9]]},"references-count":47,"alternative-id":["S0010482523007801"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2023.107315","relation":{},"ISSN":["0010-4825"],"issn-type":[{"type":"print","value":"0010-4825"}],"subject":[],"published":{"date-parts":[[2023,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Effective fall detection and post-fall breath rate tracking using a low-cost CW Doppler radar sensor","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2023.107315","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"107315"}}