{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:56:56Z","timestamp":1732042616160},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1016\/j.compbiomed.2023.106892","type":"journal-article","created":{"date-parts":[[2023,4,3]],"date-time":"2023-04-03T15:44:57Z","timestamp":1680536697000},"page":"106892","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":8,"special_numbering":"C","title":["A learnable Gabor Convolution kernel for vessel segmentation"],"prefix":"10.1016","volume":"158","author":[{"given":"Cheng","family":"Chen","sequence":"first","affiliation":[]},{"given":"Kangneng","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Siyu","family":"Qi","sequence":"additional","affiliation":[]},{"given":"Tong","family":"Lu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2721-4813","authenticated-orcid":false,"given":"Ruoxiu","family":"Xiao","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compbiomed.2023.106892_bib1","doi-asserted-by":"crossref","first-page":"2180","DOI":"10.1161\/STROKEAHA.116.013617","article-title":"Cerebral venous sinus thrombosis incidence is higher than previously thought: a retrospective population-based study","volume":"47","author":"Devasagayam","year":"2016","journal-title":"Stroke"},{"key":"10.1016\/j.compbiomed.2023.106892_bib2","doi-asserted-by":"crossref","first-page":"907","DOI":"10.1111\/bjd.12804","article-title":"Prospective study of infantile haemangiomas: incidence, clinical characteristics and association with placental anomalies","volume":"170","author":"Munden","year":"2014","journal-title":"Br. J. Dermatol."},{"key":"10.1016\/j.compbiomed.2023.106892_bib3","first-page":"383","article-title":"Infantile hemangiomas: current knowledge, future directions","volume":"vol. 22","author":"Frieden","year":"2005"},{"key":"10.1016\/j.compbiomed.2023.106892_bib4","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/j.cmpb.2018.02.001","article-title":"Blood vessel segmentation algorithms\u2014review of methods, datasets and evaluation metrics","volume":"158","author":"Moccia","year":"2018","journal-title":"Comput. Methods Progr. Biomed."},{"key":"10.1016\/j.compbiomed.2023.106892_bib5","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1016\/j.patcog.2018.11.030","article-title":"Blood vessel segmentation from fundus image by a cascade classification framework","volume":"88","author":"Wang","year":"2019","journal-title":"Pattern Recogn."},{"key":"10.1016\/j.compbiomed.2023.106892_bib6","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2019.101556","article-title":"Deep vessel segmentation by learning graphical connectivity","volume":"58","author":"Shin","year":"2019","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compbiomed.2023.106892_bib7","series-title":"Vessel Enhancement of Low Quality Fundus Image Using Mathematical Morphology and Combination of Gabor and Matched Filter","first-page":"168","author":"Lu","year":"2016"},{"key":"10.1016\/j.compbiomed.2023.106892_bib8","series-title":"Gabor Feature Based Convolutional Neural Network for Object Recognition in Natural Scene","first-page":"386","author":"Yao","year":"2016"},{"key":"10.1016\/j.compbiomed.2023.106892_bib9","doi-asserted-by":"crossref","first-page":"4357","DOI":"10.1109\/TIP.2018.2835143","article-title":"Gabor convolutional networks","volume":"27","author":"Luan","year":"2018","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.compbiomed.2023.106892_bib10","series-title":"Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition","first-page":"3012","article-title":"Compconv: a compact convolution module for efficient feature learning","author":"Zhang","year":"2021"},{"key":"10.1016\/j.compbiomed.2023.106892_bib11","doi-asserted-by":"crossref","first-page":"97","DOI":"10.3389\/fnins.2019.00097","article-title":"A U-Net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease","author":"Livne","year":"2019","journal-title":"Front. Neurosci."},{"key":"10.1016\/j.compbiomed.2023.106892_bib12","series-title":"Residual U-Net for Retinal Vessel Segmentation","first-page":"1425","author":"Li","year":"2019"},{"key":"10.1016\/j.compbiomed.2023.106892_bib13","series-title":"Improved V-Net Based Image Segmentation for 3D Neuron Reconstruction","first-page":"443","author":"Liu","year":"2018"},{"key":"10.1016\/j.compbiomed.2023.106892_bib14","doi-asserted-by":"crossref","first-page":"852","DOI":"10.1109\/TCBB.2019.2917188","article-title":"A global and local enhanced residual u-net for accurate retinal vessel segmentation","volume":"18","author":"Lian","year":"2019","journal-title":"IEEE ACM Trans. Comput. Biol. Bioinf"},{"key":"10.1016\/j.compbiomed.2023.106892_bib15","series-title":"Automatic 3D Cardiovascular MR Segmentation with Densely-Connected Volumetric Convnets","first-page":"287","author":"Yu","year":"2017"},{"key":"10.1016\/j.compbiomed.2023.106892_bib16","series-title":"Densely Connected Convolutional Networks","first-page":"4700","author":"Huang","year":"2017"},{"key":"10.1016\/j.compbiomed.2023.106892_bib17","series-title":"Miniseg: an Extremely Minimum Network for Efficient Covid-19 Segmentation","author":"Qiu","year":"2020"},{"key":"10.1016\/j.compbiomed.2023.106892_bib18","series-title":"Lednet: A Lightweight Encoder-Decoder Network for Real-Time Semantic Segmentation","first-page":"1860","author":"Wang","year":"2019"},{"key":"10.1016\/j.compbiomed.2023.106892_bib19","series-title":"Deep Residual Learning for Image Recognition","first-page":"770","author":"He","year":"2016"},{"key":"10.1016\/j.compbiomed.2023.106892_bib20","series-title":"Face Detection Using Convolutional Neural Networks and Gabor Filters","first-page":"551","author":"Kwolek","year":"2005"},{"key":"10.1016\/j.compbiomed.2023.106892_bib21","series-title":"Gabor Filter Assisted Energy Efficient Fast Learning Convolutional Neural Networks","first-page":"1","author":"Sarwar","year":"2017"},{"key":"10.1016\/j.compbiomed.2023.106892_bib22","series-title":"Improving Irregular Text Recognition by Integrating Gabor Convolutional Network","first-page":"286","author":"Guo","year":"2019"},{"key":"10.1016\/j.compbiomed.2023.106892_bib23","doi-asserted-by":"crossref","first-page":"1954","DOI":"10.1109\/LSP.2020.3031504","article-title":"Fast and efficient facial expression recognition using a gabor convolutional network","volume":"27","author":"Jiang","year":"2020","journal-title":"IEEE Signal Process. Lett."},{"key":"10.1016\/j.compbiomed.2023.106892_bib24","doi-asserted-by":"crossref","DOI":"10.1016\/j.patcog.2021.108495","article-title":"Adaptive Gabor convolutional networks","volume":"124","author":"Yuan","year":"2022","journal-title":"Pattern Recogn."},{"key":"10.1016\/j.compbiomed.2023.106892_bib25","first-page":"429","article-title":"Theory of communication. Part 1: the analysis of information","volume":"93","author":"Gabor","year":"1946","journal-title":"J. Inst. Elect. Eng.-Part III: Radio Commun. Eng."},{"key":"10.1016\/j.compbiomed.2023.106892_bib26","doi-asserted-by":"crossref","first-page":"1232","DOI":"10.1016\/j.acra.2005.05.027","article-title":"Vessel tortuosity and brain tumor malignancy: a blinded study1","volume":"12","author":"Bullitt","year":"2005","journal-title":"Acad. Radiol."},{"key":"10.1016\/j.compbiomed.2023.106892_bib27","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2021.105998","article-title":"Cerebrovascular segmentation from TOF-MRA based on multiple-U-net with focal loss function","volume":"202","author":"Guo","year":"2021","journal-title":"Comput. Methods Progr. Biomed."},{"key":"10.1016\/j.compbiomed.2023.106892_bib28","doi-asserted-by":"crossref","DOI":"10.1016\/j.compmedimag.2022.102070","article-title":"Cerebrovascular segmentation in phase-contrast magnetic resonance angiography by multi-feature fusion and vessel completion","volume":"98","author":"Chen","year":"2022","journal-title":"Comput. Med. Imag. Graph."},{"key":"10.1016\/j.compbiomed.2023.106892_bib29","series-title":"An Improvement of the Convergence Proof of the ADAM-Optimizer","author":"Bock","year":"2018"},{"key":"10.1016\/j.compbiomed.2023.106892_bib30","series-title":"Convolutional Networks for Biomedical Image Segmentation","first-page":"234","author":"Ronneberger","year":"2015"},{"key":"10.1016\/j.compbiomed.2023.106892_bib31","doi-asserted-by":"crossref","first-page":"6528","DOI":"10.1109\/TII.2021.3059023","article-title":"An effective deep neural network for lung lesions segmentation from COVID-19 CT images","volume":"17","author":"Chen","year":"2021","journal-title":"IEEE Trans. Ind. Inf."},{"key":"10.1016\/j.compbiomed.2023.106892_bib32","doi-asserted-by":"crossref","first-page":"608","DOI":"10.1109\/TMI.2021.3117888","article-title":"Inconsistency-aware uncertainty estimation for semi-supervised medical image segmentation","volume":"41","author":"Shi","year":"2021","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.compbiomed.2023.106892_bib33","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6560\/acb2ab","article-title":"Pairwise attention-enhanced adversarial model for automatic bone segmentation in CT images","volume":"68","author":"Chen","year":"2023","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.compbiomed.2023.106892_bib34","series-title":"Efficient Geometry-Aware 3D Generative Adversarial Networks","first-page":"16123","author":"Chan","year":"2022"},{"key":"10.1016\/j.compbiomed.2023.106892_bib35","first-page":"30","article-title":"Attention is all you need","author":"Vaswani","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.compbiomed.2023.106892_bib36","series-title":"3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation","first-page":"424","author":"iek","year":"2016"},{"key":"10.1016\/j.compbiomed.2023.106892_bib37","series-title":"Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation","first-page":"565","author":"Milletari","year":"2016"},{"key":"10.1016\/j.compbiomed.2023.106892_bib38","series-title":"Superhuman Accuracy on the SNEMI3D Connectomics Challenge","author":"Lee","year":"2017"},{"key":"10.1016\/j.compbiomed.2023.106892_bib39","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2021.104776","article-title":"CSR-Net: cross-Scale Residual Network for multi-objective scaphoid fracture segmentation","volume":"137","author":"Chen","year":"2021","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2023.106892_bib40","doi-asserted-by":"crossref","first-page":"346","DOI":"10.1109\/TMI.2022.3184675","article-title":"Generative consistency for semi-supervised cerebrovascular segmentation from TOF-MRA","volume":"42","author":"Chen","year":"2023","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.compbiomed.2023.106892_bib41","series-title":"Unetr: Transformers for 3d Medical Image Segmentation","first-page":"574","author":"Hatamizadeh","year":"2022"},{"key":"10.1016\/j.compbiomed.2023.106892_bib42","series-title":"A Volumetric Transformer for Accurate 3d Tumor Segmentation","author":"Peiris","year":"2021"},{"key":"10.1016\/j.compbiomed.2023.106892_bib43","doi-asserted-by":"crossref","DOI":"10.3390\/diagnostics11111942","article-title":"Loss balance under local-patch for 3D infection segmentation from COVID-19 CT images","volume":"11","author":"Chen","year":"2021","journal-title":"Diagnostics"},{"key":"10.1016\/j.compbiomed.2023.106892_bib44","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2022.105726","article-title":"How to ensure the confidentiality of electronic medical records on the cloud: a technical perspective","volume":"147","author":"Wu","year":"2022","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2023.106892_bib45","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2021.106952","article-title":"An effective approach for the protection of user commodity viewing privacy in e-commerce website","volume":"220","author":"Wu","year":"2021","journal-title":"Knowl. Base Syst."},{"key":"10.1016\/j.compbiomed.2023.106892_bib46","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.105679","article-title":"A dummy-based user privacy protection approach for text information retrieval","volume":"195","author":"Wu","year":"2020","journal-title":"Knowl. Base Syst."},{"key":"10.1016\/j.compbiomed.2023.106892_bib47","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1007\/s11280-020-00830-x","article-title":"Constructing dummy query sequences to protect location privacy and query privacy in location-based services","volume":"24","author":"Wu","year":"2021","journal-title":"World Wide Web"},{"key":"10.1016\/j.compbiomed.2023.106892_bib48","doi-asserted-by":"crossref","first-page":"1","DOI":"10.4018\/JOEUC.292526","article-title":"A basic framework for privacy protection in personalized information retrieval: an effective framework for user privacy protection","volume":"33","author":"Wu","year":"2021","journal-title":"J. Organ. End User Comput."}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482523003578?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482523003578?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,10,12]],"date-time":"2023-10-12T10:22:31Z","timestamp":1697106151000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482523003578"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5]]},"references-count":48,"alternative-id":["S0010482523003578"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2023.106892","relation":{},"ISSN":["0010-4825"],"issn-type":[{"value":"0010-4825","type":"print"}],"subject":[],"published":{"date-parts":[[2023,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"A learnable Gabor Convolution kernel for vessel segmentation","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2023.106892","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"106892"}}