{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T06:48:19Z","timestamp":1726469299908},"reference-count":18,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,4,7]],"date-time":"2023-04-07T00:00:00Z","timestamp":1680825600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100000024","name":"Canadian Institutes of Health Research","doi-asserted-by":"publisher","award":["PJT-162216"],"id":[{"id":"10.13039\/501100000024","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004489","name":"Mitacs","doi-asserted-by":"publisher","award":["IT18063"],"id":[{"id":"10.13039\/501100004489","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000002","name":"National Institutes of Health","doi-asserted-by":"publisher","award":["137993"],"id":[{"id":"10.13039\/100000002","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100005247","name":"University of British Columbia","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100005247","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100004318","name":"Microsoft","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100004318","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1016\/j.compbiomed.2023.106882","type":"journal-article","created":{"date-parts":[[2023,4,4]],"date-time":"2023-04-04T05:52:54Z","timestamp":1680587574000},"page":"106882","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":12,"special_numbering":"C","title":["Automatic segmentation of prostate cancer metastases in PSMA PET\/CT images using deep neural networks with weighted batch-wise dice loss"],"prefix":"10.1016","volume":"158","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0397-8832","authenticated-orcid":false,"given":"Yixi","family":"Xu","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0141-7628","authenticated-orcid":false,"given":"Ivan","family":"Klyuzhin","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6196-6982","authenticated-orcid":false,"given":"Sara","family":"Harsini","sequence":"additional","affiliation":[]},{"given":"Anthony","family":"Ortiz","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1679-6256","authenticated-orcid":false,"given":"Shun","family":"Zhang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7995-3581","authenticated-orcid":false,"given":"Fran\u00e7ois","family":"B\u00e9nard","sequence":"additional","affiliation":[]},{"given":"Rahul","family":"Dodhia","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3127-7478","authenticated-orcid":false,"given":"Carlos F.","family":"Uribe","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9980-2403","authenticated-orcid":false,"given":"Arman","family":"Rahmim","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9654-3178","authenticated-orcid":false,"given":"Juan","family":"Lavista Ferres","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compbiomed.2023.106882_bib2","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/j.ijrobp.2018.08.066","article-title":"Patterns of progression after 68 Ga-PSMA-Ligand PET\/CT-Guided radiation therapy for recurrent prostate cancer","volume":"103","author":"Soldatov","year":"2019","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"key":"10.1016\/j.compbiomed.2023.106882_bib3","unstructured":"Giona S. The Epidemiology of Prostate Cancer.."},{"key":"10.1016\/j.compbiomed.2023.106882_bib4","doi-asserted-by":"crossref","first-page":"1862","DOI":"10.1007\/s00259-018-4042-z","article-title":"68Ga-PSMA-11 PET\/CT-derived metabolic parameters for determination of whole-body tumor burden and treatment response in prostate cancer","volume":"45","author":"Schmidkonz","year":"2018","journal-title":"Eur. J. Nucl. Med. Mol. Imag."},{"key":"10.1016\/j.compbiomed.2023.106882_bib5","doi-asserted-by":"crossref","first-page":"411","DOI":"10.1007\/s11307-016-0957-6","article-title":"PSMA-based [18 F] DCFPyL PET\/CT is superior to conventional imaging for lesion detection in patients with metastatic prostate cancer","volume":"18","author":"Rowe","year":"2016","journal-title":"Mol. Imag. Biol."},{"key":"10.1016\/j.compbiomed.2023.106882_bib6","doi-asserted-by":"crossref","first-page":"881","DOI":"10.2967\/jnumed.119.234799","article-title":"18F-DCFPyL PET\/CT imaging in patients with biochemically recurrent prostate cancer after primary local therapy","volume":"61","author":"Mena","year":"2020","journal-title":"J. Nucl. Med."},{"key":"10.1016\/j.compbiomed.2023.106882_bib7","doi-asserted-by":"crossref","first-page":"844","DOI":"10.21037\/tau.2018.08.26","article-title":"Clinical implications of PET\/CT in prostate cancer management","volume":"7","author":"Rayn","year":"2018","journal-title":"Transl. Androl. Urol."},{"key":"10.1016\/j.compbiomed.2023.106882_bib8","doi-asserted-by":"crossref","first-page":"1587","DOI":"10.2967\/jnumed.119.226381","article-title":"A prospective study on 18F-DCFPyL PSMA PET\/CT imaging in biochemical recurrence of prostate cancer","volume":"60","author":"Rousseau","year":"2019","journal-title":"J. Nucl. Med."},{"key":"10.1016\/j.compbiomed.2023.106882_bib9","doi-asserted-by":"crossref","first-page":"823","DOI":"10.2967\/jnumed.120.254623","article-title":"Intraprostatic tumor segmentation on PSMA PET images in patients with primary prostate cancer with a convolutional neural network","volume":"62","author":"Kostyszyn","year":"2021","journal-title":"J. Nucl. Med."},{"key":"10.1016\/j.compbiomed.2023.106882_bib10","doi-asserted-by":"crossref","first-page":"208","DOI":"10.1016\/j.radonc.2019.07.002","article-title":"Validation of different PSMA-PET\/CT-based contouring techniques for intraprostatic tumor definition using histopathology as standard of reference","volume":"141","author":"Zamboglou","year":"2019","journal-title":"Radiother. Oncol."},{"key":"10.1016\/j.compbiomed.2023.106882_bib11","doi-asserted-by":"crossref","first-page":"1014","DOI":"10.1007\/s00259-017-3670-z","article-title":"68Ga-PSMA PET\/CT: joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0","volume":"44","author":"Fendler","year":"2017","journal-title":"Eur. J. Nucl. Med. Mol. Imag."},{"key":"10.1016\/j.compbiomed.2023.106882_bib12","doi-asserted-by":"crossref","first-page":"624","DOI":"10.1007\/s00259-019-04548-5","article-title":"68Ga-PSMA-11 PET\/CT in patients with recurrent prostate cancer\u2014a modified protocol compared with the common protocol","volume":"47","author":"Haupt","year":"2020","journal-title":"Eur. J. Nucl. Med. Mol. Imag."},{"key":"10.1016\/j.compbiomed.2023.106882_bib13","doi-asserted-by":"crossref","first-page":"424","DOI":"10.1007\/s00259-021-05613-8","article-title":"Harmonization of nomenclature for molecular imaging metrics of tumour burden: molecular tumour volume (MTV), total lesion activity (TLA) and total lesion fraction (TLF)","volume":"49","author":"Beauregard","year":"2022","journal-title":"Eur. J. Nucl. Med. Mol. Imag."},{"key":"10.1016\/j.compbiomed.2023.106882_bib1","series-title":"Medical Image Computing and Computer-Assisted Intervention \u2013 MICCAI 2015","first-page":"234","article-title":"Convolutional networks for biomedical image segmentation","author":"Olaf","year":"2015"},{"key":"10.1016\/j.compbiomed.2023.106882_bib14","doi-asserted-by":"crossref","first-page":"179656","DOI":"10.1109\/ACCESS.2020.3025372","article-title":"MA-net: a multi-scale attention network for liver and tumor segmentation","volume":"8","author":"Fan","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.compbiomed.2023.106882_bib15","series-title":"Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support","first-page":"3","article-title":"UNet++: a nested U-net architecture for medical image segmentation","author":"Zhou","year":"2018"},{"key":"10.1016\/j.compbiomed.2023.106882_bib16","article-title":"Automated deep segmentation of healthy organs in PSMA PET\/CT images","volume":"62","author":"Klyuzhin","year":"2021","journal-title":"J. Nucl. Med."},{"key":"10.1016\/j.compbiomed.2023.106882_bib17","series-title":"Medical Image Understanding and Analysis","first-page":"298","article-title":"Joint learning with local and global consistency for improved medical image segmentation","author":"Ahamed","year":"2022"},{"key":"10.1016\/j.compbiomed.2023.106882_bib18","doi-asserted-by":"crossref","first-page":"182","DOI":"10.18383\/j.tom.2018.00021","article-title":"Pitfalls in gallium-68 PSMA PET\/CT interpretation\u2014a pictorial review","volume":"4","author":"Shetty","year":"2018","journal-title":"Tomography"}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482523003475?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482523003475?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,10,12]],"date-time":"2023-10-12T10:22:15Z","timestamp":1697106135000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482523003475"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5]]},"references-count":18,"alternative-id":["S0010482523003475"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2023.106882","relation":{},"ISSN":["0010-4825"],"issn-type":[{"type":"print","value":"0010-4825"}],"subject":[],"published":{"date-parts":[[2023,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Automatic segmentation of prostate cancer metastases in PSMA PET\/CT images using deep neural networks with weighted batch-wise dice loss","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2023.106882","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Authors. Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"106882"}}