{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T04:12:58Z","timestamp":1740111178448,"version":"3.37.3"},"reference-count":53,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,5,1]],"date-time":"2023-05-01T00:00:00Z","timestamp":1682899200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["42276187"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["3072022FSC0401"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2023,5]]},"DOI":"10.1016\/j.compbiomed.2023.106714","type":"journal-article","created":{"date-parts":[[2023,2,28]],"date-time":"2023-02-28T16:02:29Z","timestamp":1677600149000},"page":"106714","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":6,"special_numbering":"C","title":["Medical matting: Medical image segmentation with uncertainty from the matting perspective"],"prefix":"10.1016","volume":"158","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-2374-0725","authenticated-orcid":false,"given":"Lin","family":"Wang","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-9812-2679","authenticated-orcid":false,"given":"Xiufen","family":"Ye","sequence":"additional","affiliation":[]},{"given":"Lie","family":"Ju","sequence":"additional","affiliation":[]},{"given":"Wanji","family":"He","sequence":"additional","affiliation":[]},{"given":"Donghao","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Xin","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Yelin","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Wei","family":"Feng","sequence":"additional","affiliation":[]},{"given":"Kaimin","family":"Song","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-5880-8673","authenticated-orcid":false,"given":"Zongyuan","family":"Ge","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"3","key":"10.1016\/j.compbiomed.2023.106714_b1","doi-asserted-by":"crossref","first-page":"739","DOI":"10.1148\/radiol.2323032035","article-title":"Lung image database consortium: developing a resource for the medical imaging research community","volume":"232","author":"Armato III","year":"2004","journal-title":"Radiology"},{"key":"10.1016\/j.compbiomed.2023.106714_b2","series-title":"IEEE 15th International Symposium on Biomedical Imaging (ISBI)","first-page":"168","article-title":"Skin lesion analysis toward melanoma detection: A challenge at the 2017 international symposium on biomedical imaging","author":"Codella","year":"2018"},{"year":"2020","series-title":"Quantification of uncertainties in biomedical image quantification challenge","author":"Menze","key":"10.1016\/j.compbiomed.2023.106714_b3"},{"key":"10.1016\/j.compbiomed.2023.106714_b4","article-title":"Simple and scalable predictive uncertainty estimation using deep ensembles","volume":"30","author":"Lakshminarayanan","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst. (NeurIPS)"},{"key":"10.1016\/j.compbiomed.2023.106714_b5","series-title":"British Machine Vision Conference 2017, BMVC 2017, London, UK, September 4-7, 2017","article-title":"Bayesian SegNet: Model uncertainty in deep convolutional encoder-decoder architectures for scene understanding","author":"Kendall","year":"2017"},{"key":"10.1016\/j.compbiomed.2023.106714_b6","series-title":"Advances in Neural Information Processing Systems (NeurIPS)","first-page":"5574","article-title":"What uncertainties do we need in bayesian deep learning for computer vision?","author":"Kendall","year":"2017"},{"key":"10.1016\/j.compbiomed.2023.106714_b7","doi-asserted-by":"crossref","unstructured":"C. Rupprecht, I. Laina, R. DiPietro, M. Baust, F. Tombari, N. Navab, G.D. Hager, Learning in an uncertain world: Representing ambiguity through multiple hypotheses, in: Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2017, pp. 3591\u20133600.","DOI":"10.1109\/ICCV.2017.388"},{"key":"10.1016\/j.compbiomed.2023.106714_b8","series-title":"Advances in Neural Information Processing Systems (NeurIPS)","first-page":"6965","article-title":"A probabilistic U-Net for segmentation of ambiguous images","author":"Kohl","year":"2018"},{"key":"10.1016\/j.compbiomed.2023.106714_b9","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)","first-page":"119","article-title":"Phiseg: Capturing uncertainty in medical image segmentation","author":"Baumgartner","year":"2019"},{"year":"2019","series-title":"Aleatoric and epistemic uncertainty in machine learning: A tutorial introduction","author":"H\u00fcllermeier","key":"10.1016\/j.compbiomed.2023.106714_b10"},{"key":"10.1016\/j.compbiomed.2023.106714_b11","doi-asserted-by":"crossref","unstructured":"Y. Aksoy, T. Ozan Aydin, M. Pollefeys, Designing effective inter-pixel information flow for natural image matting, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 29\u201337.","DOI":"10.1109\/CVPR.2017.32"},{"issue":"9","key":"10.1016\/j.compbiomed.2023.106714_b12","doi-asserted-by":"crossref","first-page":"2175","DOI":"10.1109\/TPAMI.2013.18","article-title":"KNN matting","volume":"35","author":"Chen","year":"2013","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)"},{"key":"10.1016\/j.compbiomed.2023.106714_b13","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Vol. 2","first-page":"II","article-title":"A bayesian approach to digital matting","author":"Chuang","year":"2001"},{"issue":"2","key":"10.1016\/j.compbiomed.2023.106714_b14","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1109\/TPAMI.2007.1177","article-title":"A closed-form solution to natural image matting","volume":"30","author":"Levin","year":"2007","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI)"},{"issue":"2","key":"10.1016\/j.compbiomed.2023.106714_b15","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1561\/0600000019","article-title":"Image and video matting: a survey","volume":"3","author":"Wang","year":"2008","journal-title":"Found. Trends\u00ae Comput. Graph. Vis."},{"key":"10.1016\/j.compbiomed.2023.106714_b16","doi-asserted-by":"crossref","unstructured":"N. Xu, B. Price, S. Cohen, T. Huang, Deep image matting, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2970\u20132979.","DOI":"10.1109\/CVPR.2017.41"},{"key":"10.1016\/j.compbiomed.2023.106714_b17","series-title":"British Machine Vision Conference (BMVC)","article-title":"Alphagan: Generative adversarial networks for natural image matting","author":"Lutz","year":"2018"},{"key":"10.1016\/j.compbiomed.2023.106714_b18","doi-asserted-by":"crossref","unstructured":"S. Cai, X. Zhang, H. Fan, H. Huang, J. Liu, J. Liu, J. Liu, J. Wang, J. Sun, Disentangled image matting, in: Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2019, pp. 8819\u20138828.","DOI":"10.1109\/ICCV.2019.00891"},{"year":"2020","series-title":"F, B, alpha matting","author":"Forte","key":"10.1016\/j.compbiomed.2023.106714_b19"},{"key":"10.1016\/j.compbiomed.2023.106714_b20","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)","first-page":"573","article-title":"Medical Matting: A new perspective on medical segmentation with uncertainty","author":"Wang","year":"2021"},{"key":"10.1016\/j.compbiomed.2023.106714_b21","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)","first-page":"234","article-title":"U-Net: Convolutional networks for biomedical image segmentation","author":"Ronneberger","year":"2015"},{"key":"10.1016\/j.compbiomed.2023.106714_b22","first-page":"1","article-title":"Auto-encoding variational Bayes","volume":"1050","author":"Kingma","year":"2014","journal-title":"Stat"},{"key":"10.1016\/j.compbiomed.2023.106714_b23","series-title":"Medical Imaging Meets NeurIPS Workshop (NeurIPS Workshop)","article-title":"A hierarchical probabilistic u-net for modeling multi-scale ambiguities","author":"Kohl","year":"2019"},{"key":"10.1016\/j.compbiomed.2023.106714_b24","series-title":"Medical Imaging with Deep Learning","first-page":"755","article-title":"Uncertainty-based graph convolutional networks for organ segmentation refinement","author":"Soberanis-Mukul","year":"2020"},{"key":"10.1016\/j.compbiomed.2023.106714_b25","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"248","article-title":"Imagenet: A large-scale hierarchical image database","author":"Deng","year":"2009"},{"key":"10.1016\/j.compbiomed.2023.106714_b26","series-title":"2014 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP)","first-page":"286","article-title":"A comprehensive study on digital image matting","author":"Yang","year":"2014"},{"key":"10.1016\/j.compbiomed.2023.106714_b27","series-title":"IEEE International Conference on Image Processing (ICIP)","first-page":"1997","article-title":"Region-based active surface modelling and alpha matting for unsupervised tumour segmentation in PET","author":"Zeng","year":"2012"},{"key":"10.1016\/j.compbiomed.2023.106714_b28","series-title":"Medical Imaging 2017: Image Processing, Vol. 10133","article-title":"AWM: Adaptive weight matting for medical image segmentation","author":"Cheng","year":"2017"},{"issue":"5","key":"10.1016\/j.compbiomed.2023.106714_b29","doi-asserted-by":"crossref","first-page":"2367","DOI":"10.1109\/TIP.2018.2885495","article-title":"A hierarchical image matting model for blood vessel segmentation in fundus images","volume":"28","author":"Fan","year":"2018","journal-title":"IEEE Trans. Image Process. (TIP)"},{"key":"10.1016\/j.compbiomed.2023.106714_b30","article-title":"Improving retinal vessel segmentation with joint local loss by matting","volume":"98","author":"Zhao","year":"2020","journal-title":"Pattern Recognit. (PR)"},{"year":"2021","series-title":"UACANet: Uncertainty augmented context attention for polyp semgnetaion","author":"Kim","key":"10.1016\/j.compbiomed.2023.106714_b31"},{"issue":"2","key":"10.1016\/j.compbiomed.2023.106714_b32","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1007\/s11263-006-7934-5","article-title":"Graph cuts and efficient ND image segmentation","volume":"70","author":"Boykov","year":"2006","journal-title":"Int. J. Comput. Vis."},{"key":"10.1016\/j.compbiomed.2023.106714_b33","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)","first-page":"137","article-title":"Supervised uncertainty quantification for segmentation with multiple annotations","author":"Hu","year":"2019"},{"issue":"5","key":"10.1016\/j.compbiomed.2023.106714_b34","doi-asserted-by":"crossref","first-page":"457","DOI":"10.1016\/j.media.2005.05.007","article-title":"Automatic segmentation of MR images of the developing newborn brain","volume":"9","author":"Prastawa","year":"2005","journal-title":"Med. Image Anal. (MIA)"},{"key":"10.1016\/j.compbiomed.2023.106714_b35","series-title":"European Conference on Computer Vision (ECCV)","first-page":"92","article-title":"Deep automatic portrait matting","author":"Shen","year":"2016"},{"key":"10.1016\/j.compbiomed.2023.106714_b36","series-title":"2009 IEEE 12th International Conference on Computer Vision (ICCV)","first-page":"889","article-title":"Learning based digital matting","author":"Zheng","year":"2009"},{"year":"2022","series-title":"PP-Matting: High-accuracy natural image matting","author":"Chen","key":"10.1016\/j.compbiomed.2023.106714_b37"},{"issue":"1","key":"10.1016\/j.compbiomed.2023.106714_b38","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1109\/MSP.2017.2765202","article-title":"Generative adversarial networks: An overview","volume":"35","author":"Creswell","year":"2018","journal-title":"IEEE Signal Process. Mag."},{"key":"10.1016\/j.compbiomed.2023.106714_b39","doi-asserted-by":"crossref","unstructured":"K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770\u2013778.","DOI":"10.1109\/CVPR.2016.90"},{"key":"10.1016\/j.compbiomed.2023.106714_b40","doi-asserted-by":"crossref","unstructured":"S. Woo, J. Park, J.-Y. Lee, I. So Kweon, CBAM: Convolutional block attention module, in: Proceedings of the European Conference on Computer Vision (ECCV), 2018, pp. 3\u201319.","DOI":"10.1007\/978-3-030-01234-2_1"},{"key":"10.1016\/j.compbiomed.2023.106714_b41","doi-asserted-by":"crossref","unstructured":"R. Girshick, Fast R-CNN, in: Proceedings of the IEEE International Conference on Computer Vision (CVPR), 2015, pp. 1440\u20131448.","DOI":"10.1109\/ICCV.2015.169"},{"key":"10.1016\/j.compbiomed.2023.106714_b42","doi-asserted-by":"crossref","first-page":"141627","DOI":"10.1109\/ACCESS.2019.2943604","article-title":"A comparison of loss weighting strategies for multi task learning in deep neural networks","volume":"7","author":"Gong","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.compbiomed.2023.106714_b43","unstructured":"A. Kendall, Y. Gal, R. Cipolla, Multi-task learning using uncertainty to weigh losses for scene geometry and semantics, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 7482\u20137491."},{"key":"10.1016\/j.compbiomed.2023.106714_b44","series-title":"ICDAR, Vol. 3","first-page":"958","article-title":"Best practices for convolutional neural networks applied to visual document analysis","author":"Simard","year":"2003"},{"key":"10.1016\/j.compbiomed.2023.106714_b45","doi-asserted-by":"crossref","unstructured":"K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision (CVPR), 2015, pp. 1026\u20131034.","DOI":"10.1109\/ICCV.2015.123"},{"year":"2020","series-title":"YOLOv4: Optimal speed and accuracy of object detection","author":"Bochkovskiy","key":"10.1016\/j.compbiomed.2023.106714_b46"},{"key":"10.1016\/j.compbiomed.2023.106714_b47","series-title":"The International Conference on Learning Representations (ICLR","article-title":"Sgdr: Stochastic gradient descent with warm restarts","author":"Loshchilov","year":"2017"},{"key":"10.1016\/j.compbiomed.2023.106714_b48","series-title":"The International Conference on Learning Representations (ICLR)","article-title":"Very deep vaes generalize autoregressive models and can outperform them on images","author":"Child","year":"2021"},{"key":"10.1016\/j.compbiomed.2023.106714_b49","series-title":"IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","first-page":"1826","article-title":"A perceptually motivated online benchmark for image matting","author":"Rhemann","year":"2009"},{"year":"2022","series-title":"MatteFormer: Transformer-based image matting via prior-tokens","author":"Park","key":"10.1016\/j.compbiomed.2023.106714_b50"},{"key":"10.1016\/j.compbiomed.2023.106714_b51","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102038","article-title":"SoftSeg: Advantages of soft versus binary training for image segmentation","volume":"71","author":"Gros","year":"2021","journal-title":"Med. Image Anal."},{"issue":"10","key":"10.1016\/j.compbiomed.2023.106714_b52","doi-asserted-by":"crossref","first-page":"1799","DOI":"10.1007\/s11548-017-1605-6","article-title":"Pulmonary nodule classification with deep residual networks","volume":"12","author":"Nibali","year":"2017","journal-title":"Int. J. Comput. Assist. Radiol. Surg."},{"year":"2020","series-title":"Exploring efficient volumetric medical image segmentation using 2.5 D method: an empirical study","author":"Zhang","key":"10.1016\/j.compbiomed.2023.106714_b53"}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482523001798?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482523001798?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,10,12]],"date-time":"2023-10-12T10:18:12Z","timestamp":1697105892000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482523001798"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5]]},"references-count":53,"alternative-id":["S0010482523001798"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2023.106714","relation":{},"ISSN":["0010-4825"],"issn-type":[{"type":"print","value":"0010-4825"}],"subject":[],"published":{"date-parts":[[2023,5]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Medical matting: Medical image segmentation with uncertainty from the matting perspective","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2023.106714","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 The Authors. Published by Elsevier Ltd.","name":"copyright","label":"Copyright"}],"article-number":"106714"}}