{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,12]],"date-time":"2024-08-12T21:52:57Z","timestamp":1723499577378},"reference-count":71,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,3,1]],"date-time":"2023-03-01T00:00:00Z","timestamp":1677628800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100005329","name":"Guizhou Provincial Natural Science Foundation","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100005329","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012669","name":"Natural Science Foundation Project of Chongqing","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100012669","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2023,3]]},"DOI":"10.1016\/j.compbiomed.2023.106606","type":"journal-article","created":{"date-parts":[[2023,1,23]],"date-time":"2023-01-23T15:58:04Z","timestamp":1674489484000},"page":"106606","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":11,"special_numbering":"C","title":["One-stage and lightweight CNN detection approach with attention: Application to WBC detection of microscopic images"],"prefix":"10.1016","volume":"154","author":[{"given":"Zhenggong","family":"Han","sequence":"first","affiliation":[]},{"given":"Haisong","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Dan","family":"Lu","sequence":"additional","affiliation":[]},{"given":"Qingsong","family":"Fan","sequence":"additional","affiliation":[]},{"given":"Chi","family":"Ma","sequence":"additional","affiliation":[]},{"given":"Xingran","family":"Chen","sequence":"additional","affiliation":[]},{"given":"Qiang","family":"Gu","sequence":"additional","affiliation":[]},{"given":"Qipeng","family":"Chen","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compbiomed.2023.106606_bib1","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1038\/s43856-022-00129-0","article-title":"Prediction of SARS-CoV-2-positivity from million-scale complete blood counts using machine learning","volume":"2","author":"Zuin","year":"2022","journal-title":"Communications medicine"},{"key":"10.1016\/j.compbiomed.2023.106606_bib2","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0267638","article-title":"Red and white blood cell morphology characterization and hands-on time analysis by the digital cell imaging analyzer DI-60","volume":"17","author":"Kweon","year":"2022","journal-title":"PLoS One"},{"key":"10.1016\/j.compbiomed.2023.106606_bib3","article-title":"Object detection networks and augmented reality for cellular detection in fluorescence microscopy","volume":"219","author":"Waithe","year":"2020","journal-title":"JCB (J. Cell Biol.)"},{"key":"10.1016\/j.compbiomed.2023.106606_bib4","doi-asserted-by":"crossref","first-page":"942","DOI":"10.1109\/JMEMS.2020.3012305","article-title":"Electronic immunoaffinity assay for differential Leukocyte counts","volume":"29","author":"Liu","year":"2020","journal-title":"J. Microelectromech. Syst."},{"key":"10.1016\/j.compbiomed.2023.106606_bib5","doi-asserted-by":"crossref","DOI":"10.3390\/biomedicines10040892","article-title":"Hepatic steatosis is associated with high white blood cell and platelet counts","volume":"10","author":"Chao","year":"2022","journal-title":"Biomedicines"},{"key":"10.1016\/j.compbiomed.2023.106606_bib6","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/j.cmpb.2017.06.005","article-title":"Ultrasound-based differentiation of malignant and benign thyroid Nodules: an extreme learning machine approach","volume":"147","author":"Xia","year":"2017","journal-title":"Comput. Methods Progr. Biomed."},{"key":"10.1016\/j.compbiomed.2023.106606_bib7","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2022.118029","article-title":"Cov-Net: A computer-aided diagnosis method for recognizing COVID-19 from chest X-ray images via machine vision","volume":"207","author":"Li","year":"2022","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.compbiomed.2023.106606_bib8","doi-asserted-by":"crossref","DOI":"10.1016\/j.imavis.2021.104341","article-title":"FMD-Yolo: An efficient face mask detection method for COVID-19 prevention and control in public","volume":"117","author":"Wu","year":"2022","journal-title":"Image Vis Comput."},{"key":"10.1016\/j.compbiomed.2023.106606_bib9","doi-asserted-by":"crossref","DOI":"10.1109\/TIM.2022.3153997","article-title":"A small-sized object detection oriented multi-scale feature fusion approach with application to defect detection","volume":"71","author":"Zeng","year":"2022","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.compbiomed.2023.106606_bib10","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2021.105031","article-title":"An efficient real-time colonic polyp detection with YOLO algorithms trained by using negative samples and large datasets","volume":"141","author":"Pacal","year":"2022","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2023.106606_bib11","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2021.104596","article-title":"Deep learning in diabetic foot ulcers detection: a comprehensive evaluation","volume":"135","author":"Yap","year":"2021","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2023.106606_bib12","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2022.106903","article-title":"YOLO-LOGO: a transformer-based YOLO segmentation model for breast mass detection and segmentation in digital mammograms","volume":"221","author":"Su","year":"2022","journal-title":"Comput. Methods Progr. Biomed."},{"key":"10.1016\/j.compbiomed.2023.106606_bib13","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2020.105893","article-title":"An intelligent model for the detection of white blood cells using artificial intelligence","volume":"199","author":"Anita","year":"2021","journal-title":"Comput. Methods Progr. Biomed."},{"key":"10.1016\/j.compbiomed.2023.106606_bib14","doi-asserted-by":"crossref","DOI":"10.1016\/j.media.2021.102329","article-title":"Skin3D: detection and longitudinal tracking of pigmented skin lesions in 3D total-body textured meshes","volume":"77","author":"Zhao","year":"2022","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compbiomed.2023.106606_bib15","doi-asserted-by":"crossref","first-page":"46753","DOI":"10.1109\/ACCESS.2022.3161575","article-title":"Progress of machine vision in the detection of cancer cells in histopathology","volume":"10","author":"He","year":"2022","journal-title":"IEEE Access"},{"key":"10.1016\/j.compbiomed.2023.106606_bib16","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2022.106888","article-title":"SMD-YOLO: An efficient and lightweight detection method for mask wearing status during the COVID-19 pandemic","volume":"221","author":"Han","year":"2022","journal-title":"Comput. Methods Progr. Biomed."},{"key":"10.1016\/j.compbiomed.2023.106606_bib17","doi-asserted-by":"crossref","DOI":"10.1109\/LGRS.2022.3153115","article-title":"Lightweight deep network with context information and attention mechanism for vehicle detection in aerial image","volume":"19","author":"Shen","year":"2022","journal-title":"Geosci. Rem. Sens. Lett. IEEE"},{"key":"10.1016\/j.compbiomed.2023.106606_bib18","doi-asserted-by":"crossref","first-page":"409","DOI":"10.1007\/s13735-022-00239-4","article-title":"InceptionDepth-wiseYOLOv2: improved implementation of YOLO framework for pedestrian detection","volume":"11","author":"Panigrahi","year":"2022","journal-title":"International Journal of Multimedia Information Retrieval"},{"key":"10.1016\/j.compbiomed.2023.106606_bib19","article-title":"Lite-YOLOv5: a lightweight deep learning detector for on-board ship detection in large-scene sentinel-1 sar images","volume":"14","author":"Xu","year":"2022","journal-title":"Rem. Sens."},{"key":"10.1016\/j.compbiomed.2023.106606_bib20","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"779","article-title":"You only look once: unified, real-time object detection","author":"Redmon","year":"2016"},{"key":"10.1016\/j.compbiomed.2023.106606_bib21","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"7263","article-title":"YOLO9000: better, faster, stronger","author":"Redmon","year":"2017"},{"key":"10.1016\/j.compbiomed.2023.106606_bib22","series-title":"Yolov3: an Incremental Improvement","author":"Redmon","year":"2018"},{"key":"10.1016\/j.compbiomed.2023.106606_bib23","series-title":"Ultralytics, YOLOv5: Open Source Neural Networks in Python","year":"2020"},{"key":"10.1016\/j.compbiomed.2023.106606_bib24","series-title":"Yolox: Exceeding Yolo Series in 2021","author":"Ge","year":"2021"},{"key":"10.1016\/j.compbiomed.2023.106606_bib25","series-title":"Yolov4: Optimal Speed and Accuracy of Object Detection","author":"Bochkovskiy","year":"2020"},{"key":"10.1016\/j.compbiomed.2023.106606_bib26","doi-asserted-by":"crossref","first-page":"4435","DOI":"10.1049\/iet-ipr.2020.0978","article-title":"Efficient computer-aided diagnosis technique for leukaemia cancer detection","volume":"14","author":"Abdulla","year":"2020","journal-title":"IET Image Process."},{"key":"10.1016\/j.compbiomed.2023.106606_bib27","doi-asserted-by":"crossref","first-page":"6355","DOI":"10.1007\/s11042-020-10066-6","article-title":"An efficient CAD system for ALL cell identification from microscopic blood images","volume":"80","author":"Mohammed","year":"2021","journal-title":"Multimed. Tool. Appl."},{"key":"10.1016\/j.compbiomed.2023.106606_bib28","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2019.103530","article-title":"Detection of red and white blood cells from microscopic blood images using a region proposal approach","volume":"116","author":"Di Ruberto","year":"2020","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2023.106606_bib29","doi-asserted-by":"crossref","first-page":"142521","DOI":"10.1109\/ACCESS.2020.3012292","article-title":"Automatic detection of white blood cancer from bone marrow microscopic images using convolutional neural networks","volume":"8","author":"Kumar","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.compbiomed.2023.106606_bib30","first-page":"2022","article-title":"Computational intelligence method for detection of white blood cells using hybrid of convolutional deep learning and SIFT","author":"Manthouri","year":"2022","journal-title":"Comput. Math. Methods Med."},{"key":"10.1016\/j.compbiomed.2023.106606_bib31","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1049\/htl.2018.5098","article-title":"Machine learning approach of automatic identification and counting of blood cells","volume":"6","author":"Alam","year":"2019","journal-title":"Healthcare technology letters"},{"key":"10.1016\/j.compbiomed.2023.106606_bib32","series-title":"Ieee, AI-Enabled Microscopic Blood Analysis for Microfluidic COVID-19 Hematology, 5th International Conference on Computational Intelligence and Applications (ICCIA)Beijing","first-page":"98","author":"Xia","year":"2020"},{"key":"10.1016\/j.compbiomed.2023.106606_bib33","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2021.102495","article-title":"A fast and yet efficient YOLOv3 for blood cell detection","volume":"66","author":"Shakarami","year":"2021","journal-title":"Biomed. Signal Process Control"},{"key":"10.1016\/j.compbiomed.2023.106606_bib34","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2021.103416","article-title":"TE-YOLOF: tiny and efficient YOLOF for blood cell detection","volume":"73","author":"Xu","year":"2022","journal-title":"Biomed. Signal Process Control"},{"key":"10.1016\/j.compbiomed.2023.106606_bib35","article-title":"White blood cells detection using yolov3 with cnn feature extraction models","volume":"10","author":"Rohaziat","year":"2020","journal-title":"Int. J. Adv. Comput. Sci. Appl."},{"key":"10.1016\/j.compbiomed.2023.106606_bib36","doi-asserted-by":"crossref","DOI":"10.1016\/j.asoc.2020.106810","article-title":"Classification of white blood cells using deep features obtained from Convolutional Neural Network models based on the combination of feature selection methods","volume":"97","author":"Togacar","year":"2020","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.compbiomed.2023.106606_bib37","first-page":"2021","article-title":"High-efficiency classification of white blood cells based on object detection","author":"Yao","year":"2021","journal-title":"Journal of Healthcare Engineering"},{"key":"10.1016\/j.compbiomed.2023.106606_bib38","series-title":"2021 IEEE International Conference on Big Data (Big Data)","first-page":"3911","article-title":"ISE-YOLO: improved squeeze-and-excitation attention module based YOLO for blood cells detection","author":"Liu","year":"2021"},{"key":"10.1016\/j.compbiomed.2023.106606_bib39","doi-asserted-by":"crossref","DOI":"10.1016\/j.mehy.2019.109472","article-title":"White blood cells detection and classification based on regional convolutional neural networks","volume":"135","author":"Kutlu","year":"2020","journal-title":"Med. Hypotheses"},{"key":"10.1016\/j.compbiomed.2023.106606_bib40","doi-asserted-by":"crossref","first-page":"65598","DOI":"10.1109\/ACCESS.2022.3182800","article-title":"MSS-WISN: multiscale multistaining WBCs instance segmentation network","volume":"10","author":"Zhao","year":"2022","journal-title":"IEEE Access"},{"key":"10.1016\/j.compbiomed.2023.106606_bib41","doi-asserted-by":"crossref","DOI":"10.3390\/e23111522","article-title":"Automatic detection and counting of blood cells in smear images using RetinaNet","volume":"23","author":"Dralus","year":"2021","journal-title":"Entropy"},{"key":"10.1016\/j.compbiomed.2023.106606_bib42","first-page":"76","article-title":"A comparative assessment of deep object detection models for blood smear analysis","author":"Talukdar","year":"2022","journal-title":"Tissue Cell"},{"key":"10.1016\/j.compbiomed.2023.106606_bib43","series-title":"Towards the Segmentation and Classification of White Blood Cell Cancer Using Hybrid Mask-Recurrent Neural Network and Transfer Learning","first-page":"2021","author":"Das","year":"2021"},{"key":"10.1016\/j.compbiomed.2023.106606_bib44","doi-asserted-by":"crossref","DOI":"10.1038\/s41598-021-04426-x","article-title":"A large dataset of white blood cells containing cell locations and types, along with segmented nuclei and cytoplasm","volume":"12","author":"Kouzehkanan","year":"2022","journal-title":"Sci. Rep."},{"key":"10.1016\/j.compbiomed.2023.106606_bib45","doi-asserted-by":"crossref","DOI":"10.1038\/s41598-021-98599-0","article-title":"New segmentation and feature extraction algorithm for classification of white blood cells in peripheral smear images","volume":"11","author":"Tavakoli","year":"2021","journal-title":"Sci. Rep."},{"key":"10.1016\/j.compbiomed.2023.106606_bib46","series-title":"International Conference on Machine Learning","article-title":"SimAM: a simple, parameter-free attention module for convolutional neural networks","author":"Yang","year":"2021"},{"key":"10.1016\/j.compbiomed.2023.106606_bib47","series-title":"15th European Conference on Computer Vision (ECCV)Munich, GERMANY","first-page":"122","article-title":"ShuffleNet V2: practical guidelines for efficient CNN architecture design","author":"Ma","year":"2018"},{"key":"10.1016\/j.compbiomed.2023.106606_bib48","doi-asserted-by":"crossref","first-page":"1904","DOI":"10.1109\/TPAMI.2015.2389824","article-title":"Spatial pyramid pooling in deep convolutional networks for visual recognition","volume":"37","author":"He","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.compbiomed.2023.106606_bib49","series-title":"Proceedings of the European Conference on Computer Vision","first-page":"3","article-title":"Cbam: convolutional block attention module","author":"Woo","year":"2018"},{"key":"10.1016\/j.compbiomed.2023.106606_bib50","series-title":"Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition","first-page":"7132","article-title":"Squeeze-and-excitation networks","author":"Hu","year":"2018"},{"key":"10.1016\/j.compbiomed.2023.106606_bib51","series-title":"2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition","article-title":"ECA-Net: Efficient Channel attention for deep convolutional neural networks","author":"Wang","year":"2020"},{"key":"10.1016\/j.compbiomed.2023.106606_bib52","first-page":"194","article-title":"An improved YOLOv5 model based on visual attention mechanism: application to recognition of tomato virus disease","author":"Qi","year":"2022","journal-title":"Comput. Electron. Agric."},{"key":"10.1016\/j.compbiomed.2023.106606_bib53","article-title":"MobileYOLO: real-time object detection algorithm in autonomous driving scenarios","volume":"22","author":"Zhou","year":"2022","journal-title":"Sensors"},{"key":"10.1016\/j.compbiomed.2023.106606_bib54","doi-asserted-by":"crossref","first-page":"31420","DOI":"10.1109\/ACCESS.2022.3157330","article-title":"Automatic abdominal hernia mesh detection based on YOLOM","volume":"10","author":"Chen","year":"2022","journal-title":"IEEE Access"},{"key":"10.1016\/j.compbiomed.2023.106606_bib55","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2021.104519","article-title":"A robust real-time deep learning based automatic polyp detection system","volume":"134","author":"Pacal","year":"2021","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2023.106606_bib56","series-title":"Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation","author":"Zheng","year":"2020"},{"key":"10.1016\/j.compbiomed.2023.106606_bib57","series-title":"Focal and Efficient IOU Loss for Accurate Bounding Box Regression","author":"Zhang","year":"2021"},{"key":"10.1016\/j.compbiomed.2023.106606_bib58","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.neunet.2017.12.012","article-title":"Sigmoid-weighted linear units for neural network function approximation in reinforcement learning","volume":"107","author":"Elfwing","year":"2018","journal-title":"Neural Network."},{"key":"10.1016\/j.compbiomed.2023.106606_bib59","series-title":"Searching for Activation Functions","author":"Ramachandran","year":"2017"},{"key":"10.1016\/j.compbiomed.2023.106606_bib60","series-title":"Mish: A Self Regularized Non-monotonic Neural Activation Function","author":"Misra","year":"2019"},{"key":"10.1016\/j.compbiomed.2023.106606_bib61","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2021.102654","article-title":"A deep convolutional neural network for the detection of polyps in colonoscopy images","volume":"68","author":"Rahim","year":"2021","journal-title":"Biomed. Signal Process Control"},{"key":"10.1016\/j.compbiomed.2023.106606_bib62","doi-asserted-by":"crossref","DOI":"10.1117\/1.JEI.31.1.013016","article-title":"Real-time object detector for low-end devices","volume":"31","author":"Zhao","year":"2022","journal-title":"J. Electron. Imag."},{"key":"10.1016\/j.compbiomed.2023.106606_bib63","series-title":"BCCD_Dataset, HPC-AI Lab","author":"Gan","year":"2018"},{"key":"10.1016\/j.compbiomed.2023.106606_bib64","doi-asserted-by":"crossref","first-page":"333","DOI":"10.1016\/j.compmedimag.2011.01.003","article-title":"Automatic recognition of five types of white blood cells in peripheral blood","volume":"35","author":"Rezatofighi","year":"2011","journal-title":"Comput. Med. Imag. Graph."},{"key":"10.1016\/j.compbiomed.2023.106606_bib65","doi-asserted-by":"crossref","DOI":"10.1155\/2022\/5140148","article-title":"Explainable AI in diagnosing and anticipating leukemia using transfer learning method","volume":"2022","author":"Abir","year":"2022","journal-title":"Comput. Intell. Neurosci."},{"key":"10.1016\/j.compbiomed.2023.106606_bib66","doi-asserted-by":"crossref","first-page":"6297","DOI":"10.1364\/AO.461627","article-title":"Improved YOLOX detection algorithm for contraband in X-ray images","volume":"61","author":"Zhang","year":"2022","journal-title":"Appl. Opt."},{"key":"10.1016\/j.compbiomed.2023.106606_bib67","article-title":"Fisheye image detection of trees using improved YOLOX for tree height estimation","volume":"22","author":"Song","year":"2022","journal-title":"Sensors"},{"key":"10.1016\/j.compbiomed.2023.106606_bib68","volume":"11","author":"Malta","year":"2021"},{"key":"10.1016\/j.compbiomed.2023.106606_bib69","first-page":"22","article-title":"An online rail track fastener classification system based on YOLO models","author":"Hsieh","year":"2022","journal-title":"Sensors"},{"key":"10.1016\/j.compbiomed.2023.106606_bib70","volume":"66","author":"Nagrath","year":"2021"},{"key":"10.1016\/j.compbiomed.2023.106606_bib71","doi-asserted-by":"crossref","first-page":"4475","DOI":"10.1007\/s11042-021-11772-5","article-title":"Face mask detection and classification via deep transfer learning","volume":"81","author":"Su","year":"2022","journal-title":"Multimed. Tool. Appl."}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482523000719?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482523000719?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,2,26]],"date-time":"2023-02-26T20:20:19Z","timestamp":1677442819000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482523000719"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3]]},"references-count":71,"alternative-id":["S0010482523000719"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2023.106606","relation":{},"ISSN":["0010-4825"],"issn-type":[{"value":"0010-4825","type":"print"}],"subject":[],"published":{"date-parts":[[2023,3]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"One-stage and lightweight CNN detection approach with attention: Application to WBC detection of microscopic images","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2023.106606","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2023 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"106606"}}