{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,28]],"date-time":"2025-04-28T17:09:18Z","timestamp":1745860158138,"version":"3.37.3"},"reference-count":65,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100011789","name":"Department of Science and Technology of Jilin Province","doi-asserted-by":"publisher","award":["20210201138GX"],"id":[{"id":"10.13039\/501100011789","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2023,1]]},"DOI":"10.1016\/j.compbiomed.2022.106420","type":"journal-article","created":{"date-parts":[[2022,12,13]],"date-time":"2022-12-13T06:57:41Z","timestamp":1670914661000},"page":"106420","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":28,"special_numbering":"C","title":["MI-DABAN: A dual-attention-based adversarial network for motor imagery classification"],"prefix":"10.1016","volume":"152","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-3637-2581","authenticated-orcid":false,"given":"Huiying","family":"Li","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-6052-9860","authenticated-orcid":false,"given":"Dongxue","family":"Zhang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-9415-0856","authenticated-orcid":false,"given":"Jingmeng","family":"Xie","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compbiomed.2022.106420_b1","doi-asserted-by":"crossref","unstructured":"Jonathan\u00a0R. Wolpaw, Brain-computer interfaces (BCIs) for communication and control, in: Proceedings of the 9th International ACM SIGACCESS Conference on Computers and Accessibility, 2007, pp. 1\u20132.","DOI":"10.1145\/1296843.1296845"},{"key":"10.1016\/j.compbiomed.2022.106420_b2","series-title":"International Conference on Augmented Cognition","first-page":"14","article-title":"Using motor imagery to control brain-computer interfaces for communication","author":"Brumberg","year":"2016"},{"issue":"5","key":"10.1016\/j.compbiomed.2022.106420_b3","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1145\/1941487.1941506","article-title":"Brain-computer interfaces for communication and control","volume":"54","author":"McFarland","year":"2011","journal-title":"Commun. ACM"},{"key":"10.1016\/j.compbiomed.2022.106420_b4","first-page":"1","article-title":"Deep learning techniques for classification of electroencephalogram (EEG) motor imagery (MI) signals: A review","author":"Altaheri","year":"2021","journal-title":"Neural Comput. Appl."},{"key":"10.1016\/j.compbiomed.2022.106420_b5","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2020.103927","article-title":"Multi-channel EEG-based emotion recognition via a multi-level features guided capsule network","volume":"123","author":"Liu","year":"2020","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2022.106420_b6","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2021.104757","article-title":"EEG channel correlation based model for emotion recognition","volume":"136","author":"Islam","year":"2021","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2022.106420_b7","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2022.105907","article-title":"Multi-modal emotion recognition using EEG and speech signals","volume":"149","author":"Wang","year":"2022","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2022.106420_b8","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2022.105366","article-title":"A 65nm\/0.448 mW EEG processor with parallel architecture SVM and lifting wavelet transform for high-performance and low-power epilepsy detection","volume":"144","author":"Wen","year":"2022","journal-title":"Comput. Biol. Med."},{"year":"2020","series-title":"Binary and multiclass classifiers based on multitaper spectral features for epilepsy detection","author":"Oliva","key":"10.1016\/j.compbiomed.2022.106420_b9"},{"issue":"1","key":"10.1016\/j.compbiomed.2022.106420_b10","first-page":"1","article-title":"Electrophysiological frequency domain analysis of driver passive fatigue under automated driving conditions","volume":"11","author":"Zhang","year":"2021","journal-title":"Sci. Rep."},{"key":"10.1016\/j.compbiomed.2022.106420_b11","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2021.102857","article-title":"Driver fatigue detection based on prefrontal EEG using multi-entropy measures and hybrid model","volume":"69","author":"Min","year":"2021","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.compbiomed.2022.106420_b12","series-title":"2012 IEEE International Conference on Systems, Man, and Cybernetics","first-page":"274","article-title":"Spectral components of the P300 speller response in and adjacent to the hippocampus","author":"Krusienski","year":"2012"},{"key":"10.1016\/j.compbiomed.2022.106420_b13","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2020.101888","article-title":"Character encoding based on occurrence probability enhances the performance of SSVEP-based BCI spellers","volume":"58","author":"Sadeghi","year":"2020","journal-title":"Biomed. Signal Process. Control"},{"issue":"3","key":"10.1016\/j.compbiomed.2022.106420_b14","doi-asserted-by":"crossref","first-page":"423","DOI":"10.1631\/FITEE.1601509","article-title":"Electroencephalogram-based brain-computer interface for the Chinese spelling system: A survey","volume":"19","author":"Shi","year":"2018","journal-title":"Front. Inf. Technol. Electron. Eng."},{"key":"10.1016\/j.compbiomed.2022.106420_b15","series-title":"2013 International Winter Workshop on Brain-Computer Interface","first-page":"46","article-title":"Design of a robotic wheelchair with a motor imagery based brain-computer interface","author":"Kim","year":"2013"},{"key":"10.1016\/j.compbiomed.2022.106420_b16","doi-asserted-by":"crossref","first-page":"1243","DOI":"10.3389\/fnins.2019.01243","article-title":"An EEG-\/EOG-based hybrid brain-computer interface: Application on controlling an integrated wheelchair robotic arm system","volume":"13","author":"Huang","year":"2019","journal-title":"Front. Neurosci."},{"issue":"2","key":"10.1016\/j.compbiomed.2022.106420_b17","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2552\/aaf594","article-title":"Combination of high-frequency SSVEP-based BCI and computer vision for controlling a robotic arm","volume":"16","author":"Chen","year":"2019","journal-title":"J. Neural Eng."},{"issue":"12","key":"10.1016\/j.compbiomed.2022.106420_b18","doi-asserted-by":"crossref","first-page":"3140","DOI":"10.1109\/TNSRE.2020.3038209","article-title":"Combination of augmented reality based brain-computer interface and computer vision for high-level control of a robotic arm","volume":"28","author":"Chen","year":"2020","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"issue":"1","key":"10.1016\/j.compbiomed.2022.106420_b19","doi-asserted-by":"crossref","first-page":"77","DOI":"10.3233\/NRE-172394","article-title":"Brain-machine interfaces for rehabilitation in stroke: A review","volume":"43","author":"L\u00f3pez-Larraz","year":"2018","journal-title":"NeuroRehabilitation"},{"key":"10.1016\/j.compbiomed.2022.106420_b20","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2020.103843","article-title":"Review on motor imagery based BCI systems for upper limb post-stroke neurorehabilitation: From designing to application","volume":"123","author":"Khan","year":"2020","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2022.106420_b21","doi-asserted-by":"crossref","DOI":"10.1155\/2018\/1624637","article-title":"Motor imagery-based brain-computer interface coupled to a robotic hand orthosis aimed for neurorehabilitation of stroke patients","volume":"2018","author":"Cantillo-Negrete","year":"2018","journal-title":"J. Healthc. Eng."},{"issue":"9","key":"10.1016\/j.compbiomed.2022.106420_b22","doi-asserted-by":"crossref","first-page":"1541","DOI":"10.1109\/TBME.2005.851521","article-title":"Spatio-spectral filters for improving the classification of single trial EEG","volume":"52","author":"Lemm","year":"2005","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.compbiomed.2022.106420_b23","series-title":"2008 IEEE International Joint Conference on Neural Networks","first-page":"2390","article-title":"Filter bank common spatial pattern (FBCSP) in brain-computer interface","author":"Ang","year":"2008"},{"issue":"11","key":"10.1016\/j.compbiomed.2022.106420_b24","doi-asserted-by":"crossref","first-page":"2730","DOI":"10.1109\/TBME.2009.2026181","article-title":"A new discriminative common spatial pattern method for motor imagery brain\u2013computer interfaces","volume":"56","author":"Thomas","year":"2009","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.compbiomed.2022.106420_b25","doi-asserted-by":"crossref","first-page":"39","DOI":"10.3389\/fnins.2012.00039","article-title":"Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b","volume":"6","author":"Ang","year":"2012","journal-title":"Front. Neurosci."},{"issue":"8","key":"10.1016\/j.compbiomed.2022.106420_b26","doi-asserted-by":"crossref","first-page":"683","DOI":"10.1109\/LSP.2009.2022557","article-title":"Composite common spatial pattern for subject-to-subject transfer","volume":"16","author":"Kang","year":"2009","journal-title":"IEEE Signal Process. Lett."},{"issue":"8","key":"10.1016\/j.compbiomed.2022.106420_b27","doi-asserted-by":"crossref","first-page":"2289","DOI":"10.1109\/TBME.2013.2253608","article-title":"Transferring subspaces between subjects in brain\u2013computer interfacing","volume":"60","author":"Samek","year":"2013","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"10.1016\/j.compbiomed.2022.106420_b28","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1016\/j.eswa.2017.11.007","article-title":"A multi-class EEG-based BCI classification using multivariate empirical mode decomposition based filtering and Riemannian geometry","volume":"95","author":"Gaur","year":"2018","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.compbiomed.2022.106420_b29","series-title":"International Conference on Machine Learning","first-page":"938","article-title":"Support matrix machines","author":"Luo","year":"2015"},{"key":"10.1016\/j.compbiomed.2022.106420_b30","doi-asserted-by":"crossref","first-page":"715","DOI":"10.1016\/j.patcog.2017.10.003","article-title":"Sparse support matrix machine","volume":"76","author":"Zheng","year":"2018","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.compbiomed.2022.106420_b31","series-title":"2016 23rd International Conference on Pattern Recognition","first-page":"3386","article-title":"Inter-dependent CNNs for joint scene and object recognition","author":"Bappy","year":"2016"},{"key":"10.1016\/j.compbiomed.2022.106420_b32","doi-asserted-by":"crossref","DOI":"10.1016\/j.measurement.2021.109196","article-title":"Convolutional neural network based bearing fault diagnosis of rotating machine using thermal images","volume":"176","author":"Choudhary","year":"2021","journal-title":"Measurement"},{"key":"10.1016\/j.compbiomed.2022.106420_b33","article-title":"Attention is all you need","volume":"30","author":"Vaswani","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"11","key":"10.1016\/j.compbiomed.2022.106420_b34","doi-asserted-by":"crossref","first-page":"5391","DOI":"10.1002\/hbm.23730","article-title":"Deep learning with convolutional neural networks for EEG decoding and visualization","volume":"38","author":"Schirrmeister","year":"2017","journal-title":"Hum. Brain Mapp."},{"issue":"11","key":"10.1016\/j.compbiomed.2022.106420_b35","doi-asserted-by":"crossref","first-page":"5619","DOI":"10.1109\/TNNLS.2018.2789927","article-title":"Learning temporal information for brain-computer interface using convolutional neural networks","volume":"29","author":"Sakhavi","year":"2018","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"10.1016\/j.compbiomed.2022.106420_b36","doi-asserted-by":"crossref","first-page":"532","DOI":"10.1016\/j.eswa.2018.08.031","article-title":"An end-to-end deep learning approach to MI-EEG signal classification for BCIs","volume":"114","author":"Dose","year":"2018","journal-title":"Expert Syst. Appl."},{"issue":"5","key":"10.1016\/j.compbiomed.2022.106420_b37","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2552\/aace8c","article-title":"EEGNet: A compact convolutional neural network for EEG-based brain\u2013computer interfaces","volume":"15","author":"Lawhern","year":"2018","journal-title":"J. Neural Eng."},{"key":"10.1016\/j.compbiomed.2022.106420_b38","series-title":"2020 IEEE Symposium Series on Computational Intelligence","first-page":"2814","article-title":"End-to-end electroencephalogram (EEG) motor imagery classification with long short-term","author":"Leon-Urbano","year":"2020"},{"issue":"3","key":"10.1016\/j.compbiomed.2022.106420_b39","doi-asserted-by":"crossref","first-page":"72","DOI":"10.3390\/computers9030072","article-title":"Fusion convolutional neural network for cross-subject EEG motor imagery classification","volume":"9","author":"Roots","year":"2020","journal-title":"Computers"},{"issue":"4","key":"10.1016\/j.compbiomed.2022.106420_b40","doi-asserted-by":"crossref","DOI":"10.1088\/1741-2552\/abed81","article-title":"EEG-inception: An accurate and robust end-to-end neural network for EEG-based motor imagery classification","volume":"18","author":"Zhang","year":"2021","journal-title":"J. Neural Eng."},{"issue":"8","key":"10.1016\/j.compbiomed.2022.106420_b41","doi-asserted-by":"crossref","first-page":"1797","DOI":"10.1007\/s11760-021-01924-3","article-title":"A spatial-frequency-temporal 3D convolutional neural network for motor imagery EEG signal classification","volume":"15","author":"Miao","year":"2021","journal-title":"Signal Image Video Process."},{"issue":"5","key":"10.1016\/j.compbiomed.2022.106420_b42","doi-asserted-by":"crossref","first-page":"4824","DOI":"10.1007\/s10489-021-02622-w","article-title":"MIDNN-A classification approach for the EEG based motor imagery tasks using deep neural network","volume":"52","author":"Tiwari","year":"2022","journal-title":"Appl. Intell."},{"key":"10.1016\/j.compbiomed.2022.106420_b43","series-title":"International Conference on Image and Signal Processing","first-page":"103","article-title":"Incep-EEGNet: A convnet for motor imagery decoding","author":"Riyad","year":"2020"},{"key":"10.1016\/j.compbiomed.2022.106420_b44","doi-asserted-by":"crossref","first-page":"1534","DOI":"10.1109\/TNSRE.2021.3099908","article-title":"A temporal-spectral-based squeeze-and-excitation feature fusion network for motor imagery EEG decoding","volume":"29","author":"Li","year":"2021","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"key":"10.1016\/j.compbiomed.2022.106420_b45","doi-asserted-by":"crossref","DOI":"10.1016\/j.jneumeth.2020.109037","article-title":"MI-EEGNET: A novel convolutional neural network for motor imagery classification","volume":"353","author":"Riyad","year":"2021","journal-title":"J. Neurosci. Methods"},{"key":"10.1016\/j.compbiomed.2022.106420_b46","doi-asserted-by":"crossref","first-page":"540","DOI":"10.1109\/TNSRE.2022.3156076","article-title":"SincNet-based hybrid neural network for motor imagery EEG decoding","volume":"30","author":"Liu","year":"2022","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"key":"10.1016\/j.compbiomed.2022.106420_b47","doi-asserted-by":"crossref","DOI":"10.1016\/j.bspc.2021.103190","article-title":"A classification method for EEG motor imagery signals based on parallel convolutional neural network","volume":"71","author":"Han","year":"2022","journal-title":"Biomed. Signal Process. Control"},{"key":"10.1016\/j.compbiomed.2022.106420_b48","series-title":"2017 8th International IEEE\/EMBS Conference on Neural Engineering","first-page":"588","article-title":"Convolutional neural network-based transfer learning and knowledge distillation using multi-subject data in motor imagery BCI","author":"Sakhavi","year":"2017"},{"key":"10.1016\/j.compbiomed.2022.106420_b49","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2022.105288","article-title":"A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals","volume":"143","author":"Khademi","year":"2022","journal-title":"Comput. Biol. Med."},{"key":"10.1016\/j.compbiomed.2022.106420_b50","series-title":"2017 International Conference on Orange Technologies","first-page":"222","article-title":"EEG-Based emotion recognition using domain adaptation network","author":"Jin","year":"2017"},{"key":"10.1016\/j.compbiomed.2022.106420_b51","doi-asserted-by":"crossref","first-page":"128273","DOI":"10.1109\/ACCESS.2019.2939288","article-title":"Cross-subject EEG signal recognition using deep domain adaptation network","volume":"7","author":"Hang","year":"2019","journal-title":"IEEE Access"},{"key":"10.1016\/j.compbiomed.2022.106420_b52","article-title":"Multiattention adaptation network for motor imagery recognition","author":"Chen","year":"2021","journal-title":"IEEE Trans. Syst. Man Cybern.: Syst."},{"key":"10.1016\/j.compbiomed.2022.106420_b53","doi-asserted-by":"crossref","first-page":"556","DOI":"10.1109\/TNSRE.2021.3059166","article-title":"Dynamic joint domain adaptation network for motor imagery classification","volume":"29","author":"Hong","year":"2021","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"issue":"2","key":"10.1016\/j.compbiomed.2022.106420_b54","doi-asserted-by":"crossref","first-page":"535","DOI":"10.1109\/TNNLS.2020.3010780","article-title":"Deep representation-based domain adaptation for nonstationary EEG classification","volume":"32","author":"Zhao","year":"2020","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"issue":"2","key":"10.1016\/j.compbiomed.2022.106420_b55","doi-asserted-by":"crossref","first-page":"399","DOI":"10.1109\/TBME.2019.2913914","article-title":"Transfer learning for brain\u2013computer interfaces: A Euclidean space data alignment approach","volume":"67","author":"He","year":"2019","journal-title":"IEEE Trans. Biomed. Eng."},{"issue":"8","key":"10.1016\/j.compbiomed.2022.106420_b56","doi-asserted-by":"crossref","first-page":"3085","DOI":"10.1007\/s00500-015-1937-5","article-title":"Adaptive learning with covariate shift-detection for motor imagery-based brain\u2013computer interface","volume":"20","author":"Raza","year":"2016","journal-title":"Soft Comput."},{"key":"10.1016\/j.compbiomed.2022.106420_b57","series-title":"2019 7th International Winter Conference on Brain-Computer Interface","first-page":"1","article-title":"Domain adaptation with source selection for motor-imagery based BCI","author":"Jeon","year":"2019"},{"issue":"1","key":"10.1016\/j.compbiomed.2022.106420_b58","doi-asserted-by":"crossref","first-page":"96","DOI":"10.3390\/e22010096","article-title":"Conditional adversarial domain adaptation neural network for motor imagery EEG decoding","volume":"22","author":"Tang","year":"2020","journal-title":"Entropy"},{"key":"10.1016\/j.compbiomed.2022.106420_b59","series-title":"International Conference on Machine Learning","first-page":"7354","article-title":"Self-attention generative adversarial networks","author":"Zhang","year":"2019"},{"key":"10.1016\/j.compbiomed.2022.106420_b60","doi-asserted-by":"crossref","first-page":"809","DOI":"10.1109\/TNSRE.2021.3076234","article-title":"An attention-based deep learning approach for sleep stage classification with single-channel EEG","volume":"29","author":"Eldele","year":"2021","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"key":"10.1016\/j.compbiomed.2022.106420_b61","doi-asserted-by":"crossref","first-page":"892","DOI":"10.1109\/TIP.2020.3031161","article-title":"Attention guided multiple source and target domain adaptation","volume":"30","author":"Wang","year":"2020","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.compbiomed.2022.106420_b62","doi-asserted-by":"crossref","unstructured":"Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, Tatsuya Harada, Maximum classifier discrepancy for unsupervised domain adaptation, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 3723\u20133732.","DOI":"10.1109\/CVPR.2018.00392"},{"key":"10.1016\/j.compbiomed.2022.106420_b63","series-title":"BCI Competition 2008\u2013Graz Data Set A, Vol. 16","first-page":"1","author":"Brunner","year":"2008"},{"key":"10.1016\/j.compbiomed.2022.106420_b64","series-title":"BCI Competition 2008\u2013Graz Data Set B","first-page":"1","author":"Leeb","year":"2008"},{"issue":"11","key":"10.1016\/j.compbiomed.2022.106420_b65","article-title":"Visualizing data using t-SNE","volume":"9","author":"Van\u00a0der Maaten","year":"2008","journal-title":"J. Mach. Learn. Res."}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482522011283?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482522011283?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,2,16]],"date-time":"2023-02-16T00:25:12Z","timestamp":1676507112000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482522011283"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1]]},"references-count":65,"alternative-id":["S0010482522011283"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2022.106420","relation":{},"ISSN":["0010-4825"],"issn-type":[{"type":"print","value":"0010-4825"}],"subject":[],"published":{"date-parts":[[2023,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"MI-DABAN: A dual-attention-based adversarial network for motor imagery classification","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2022.106420","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"106420"}}