{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,13]],"date-time":"2024-09-13T05:55:45Z","timestamp":1726206945827},"reference-count":46,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2023,1]]},"DOI":"10.1016\/j.compbiomed.2022.106367","type":"journal-article","created":{"date-parts":[[2022,12,7]],"date-time":"2022-12-07T16:35:44Z","timestamp":1670430944000},"page":"106367","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":3,"special_numbering":"C","title":["Exploiting task relationships for Alzheimer\u2019s disease cognitive score prediction via multi-task learning"],"prefix":"10.1016","volume":"152","author":[{"given":"Wei","family":"Liang","sequence":"first","affiliation":[]},{"given":"Kai","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Peng","family":"Cao","sequence":"additional","affiliation":[]},{"given":"Xiaoli","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Jinzhu","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Osmar R.","family":"Zaiane","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"10043","key":"10.1016\/j.compbiomed.2022.106367_b1","doi-asserted-by":"crossref","first-page":"505","DOI":"10.1016\/S0140-6736(15)01124-1","article-title":"Alzheimer\u2019s disease","volume":"388","year":"2016","journal-title":"Lancet"},{"key":"10.1016\/j.compbiomed.2022.106367_b2","unstructured":"World Health Organization and others, Risk reduction of cognitive decline and dementia: WHO guidelines, in: Risk Reduction of Cognitive Decline and Dementia: WHO Guidelines, 2019."},{"key":"10.1016\/j.compbiomed.2022.106367_b3","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/JTEHM.2020.2984601","article-title":"Multi-Source Transfer Learning via Ensemble Approach for Initial Diagnosis of Alzheimer\u2019s Disease","volume":"8","author":"Yang","year":"2020","journal-title":"IEEE J. Transl. Eng. Health Med."},{"key":"10.1016\/j.compbiomed.2022.106367_b4","doi-asserted-by":"crossref","DOI":"10.12688\/f1000research.14506.1","article-title":"Current understanding of Alzheimer\u2019s disease diagnosis and treatment","volume":"7","author":"Weller","year":"2018","journal-title":"F1000Research"},{"key":"10.1016\/j.compbiomed.2022.106367_b5","doi-asserted-by":"crossref","DOI":"10.1016\/j.impact.2020.100251","article-title":"Nanomaterials for the treatment and diagnosis of Alzheimer\u2019s disease: An overview","author":"Bilal","year":"2020","journal-title":"NanoImpact"},{"issue":"1s","key":"10.1016\/j.compbiomed.2022.106367_b6","first-page":"1","article-title":"Machine learning techniques for the diagnosis of Alzheimer\u2019s disease: A review","volume":"16","author":"Tanveer","year":"2020","journal-title":"ACM Trans. Multimed. Comput. Commun. Appl. (TOMM)"},{"key":"10.1016\/j.compbiomed.2022.106367_b7","first-page":"1","article-title":"Cognitive Function Assessment and Prediction for Subjective Cognitive Decline and Mild Cognitive Impairment","author":"Li","year":"2021","journal-title":"Brain Imag. Behav."},{"key":"10.1016\/j.compbiomed.2022.106367_b8","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1016\/j.patcog.2017.07.018","article-title":"Sparse shared structure based multi-task learning for MRI based cognitive performance prediction of Alzheimer\u2019s disease","volume":"72","author":"Cao","year":"2017","journal-title":"Pattern Recognit."},{"issue":"2","key":"10.1016\/j.compbiomed.2022.106367_b9","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1038\/nrneurol.2009.215","article-title":"The clinical use of structural MRI in Alzheimer disease","volume":"6","author":"Frisoni","year":"2010","journal-title":"Nat. Rev. Neurol."},{"issue":"2","key":"10.1016\/j.compbiomed.2022.106367_b10","doi-asserted-by":"crossref","first-page":"207","DOI":"10.1016\/S1474-4422(12)70291-0","article-title":"Tracking pathophysiological processes in Alzheimer\u2019s disease: an updated hypothetical model of dynamic biomarkers","volume":"12","author":"Jack\u00a0Jr.","year":"2013","journal-title":"Lancet Neurol."},{"issue":"6","key":"10.1016\/j.compbiomed.2022.106367_b11","doi-asserted-by":"crossref","first-page":"692","DOI":"10.1136\/jnnp-2013-306285","article-title":"An algorithmic approach to structural imaging in dementia","volume":"85","author":"Harper","year":"2014","journal-title":"J. Neurol. Neurosurg. Psychiatry"},{"issue":"4","key":"10.1016\/j.compbiomed.2022.106367_b12","doi-asserted-by":"crossref","first-page":"570","DOI":"10.1016\/j.jalz.2018.12.001","article-title":"Predicting diagnosis and cognition with 18F-AV-1451 tau PET and structural MRI in Alzheimer\u2019s disease","volume":"15","author":"Mattsson","year":"2019","journal-title":"Alzheimer\u2019s Dementia"},{"issue":"6","key":"10.1016\/j.compbiomed.2022.106367_b13","doi-asserted-by":"crossref","first-page":"e601","DOI":"10.1212\/WNL.0000000000006875","article-title":"Associations between tau, A\u03b2, and cortical thickness with cognition in Alzheimer disease","volume":"92","author":"Ossenkoppele","year":"2019","journal-title":"Neurology"},{"issue":"1","key":"10.1016\/j.compbiomed.2022.106367_b14","doi-asserted-by":"crossref","first-page":"59","DOI":"10.2967\/jnumed.111.096578","article-title":"Effectiveness and safety of 18F-FDG PET in the evaluation of dementia: a review of the recent literature","volume":"53","author":"Bohnen","year":"2012","journal-title":"J. Nucl. Med."},{"issue":"10","key":"10.1016\/j.compbiomed.2022.106367_b15","doi-asserted-by":"crossref","first-page":"868","DOI":"10.1016\/S1474-4422(12)70200-4","article-title":"Neuroimaging correlates of pathologically defined subtypes of Alzheimer\u2019s disease: a case-control study","volume":"11","author":"Whitwell","year":"2012","journal-title":"Lancet Neurol."},{"issue":"14","key":"10.1016\/j.compbiomed.2022.106367_b16","doi-asserted-by":"crossref","first-page":"4127","DOI":"10.1002\/hbm.25115","article-title":"Using machine learning to quantify structural MRI neurodegeneration patterns of Alzheimer\u2019s disease into dementia score: Independent validation on 8,834 images from ADNI, AIBL, OASIS, and MIRIAD databases","volume":"41","author":"Popuri","year":"2020","journal-title":"Hum. Brain Mapping"},{"issue":"6","key":"10.1016\/j.compbiomed.2022.106367_b17","doi-asserted-by":"crossref","first-page":"643","DOI":"10.1111\/joim.12816","article-title":"Biomarkers for Alzheimer\u2019s disease: current status and prospects for the future","volume":"284","author":"Blennow","year":"2018","journal-title":"J. Internal Med."},{"key":"10.1016\/j.compbiomed.2022.106367_b18","doi-asserted-by":"crossref","first-page":"370","DOI":"10.1016\/j.patcog.2018.11.027","article-title":"Structured sparsity regularized multiple kernel learning for Alzheimer\u2019s disease diagnosis","volume":"88","author":"Peng","year":"2019","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.compbiomed.2022.106367_b19","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.cmpb.2018.04.028","article-title":"Generalized fused group lasso regularized multi-task feature learning for predicting cognitive outcomes in Alzheimers disease","volume":"162","author":"Cao","year":"2018","journal-title":"Comput. Methods Programs Biomed."},{"key":"10.1016\/j.compbiomed.2022.106367_b20","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.media.2015.10.008","article-title":"A novel relational regularization feature selection method for joint regression and classification in AD diagnosis","volume":"38","author":"Zhu","year":"2017","journal-title":"Med. Image Anal."},{"issue":"2","key":"10.1016\/j.compbiomed.2022.106367_b21","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1007\/s12021-018-9398-5","article-title":"Fused group lasso regularized multi-task feature learning and its application to the cognitive performance prediction of Alzheimer\u2019s disease","volume":"17","author":"Liu","year":"2019","journal-title":"Neuroinformatics"},{"issue":"4","key":"10.1016\/j.compbiomed.2022.106367_b22","doi-asserted-by":"crossref","first-page":"1405","DOI":"10.1016\/j.neuroimage.2010.03.051","article-title":"Predicting clinical scores from magnetic resonance scans in Alzheimer\u2019s disease","volume":"51","author":"Stonnington","year":"2010","journal-title":"Neuroimage"},{"issue":"1","key":"10.1016\/j.compbiomed.2022.106367_b23","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1007\/s12021-014-9238-1","article-title":"Clinical prediction from structural brain MRI scans: a large-scale empirical study","volume":"13","author":"Sabuncu","year":"2015","journal-title":"Neuroinformatics"},{"issue":"1","key":"10.1016\/j.compbiomed.2022.106367_b24","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1023\/A:1007379606734","article-title":"Multitask learning","volume":"28","author":"Caruana","year":"1997","journal-title":"Mach. Learn."},{"key":"10.1016\/j.compbiomed.2022.106367_b25","series-title":"Multi-task feature learning via efficient l2, 1-norm minimization","author":"Liu","year":"2012"},{"key":"10.1016\/j.compbiomed.2022.106367_b26","article-title":"Multi-task feature learning","volume":"19","author":"Argyriou","year":"2006","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.compbiomed.2022.106367_b27","doi-asserted-by":"crossref","unstructured":"P. Cao, S. Tang, M. Huang, J. Yang, D. Zhao, A. Trabelsi, O. Zaiane, Feature-aware Multi-task feature learning for Predicting Cognitive Outcomes in Alzheimer\u2019s disease, in: 2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM, 2019, pp. 1\u20135, http:\/\/dx.doi.org\/10.1109\/BIBM47256.2019.8983258.","DOI":"10.1109\/BIBM47256.2019.8983258"},{"issue":"6","key":"10.1016\/j.compbiomed.2022.106367_b28","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3230668","article-title":"Modeling Alzheimer\u2019s disease progression with fused laplacian sparse group lasso","volume":"12","author":"Liu","year":"2018","journal-title":"ACM Trans. Knowl. Discov. Data (TKDD)"},{"key":"10.1016\/j.compbiomed.2022.106367_b29","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/j.media.2019.01.007","article-title":"Multi-task exclusive relationship learning for Alzheimer\u2019s disease progression prediction with longitudinal data","volume":"53","author":"Wang","year":"2019","journal-title":"Med. Image Anal."},{"key":"10.1016\/j.compbiomed.2022.106367_b30","doi-asserted-by":"crossref","unstructured":"H. Li, M. Gong, Self-paced Convolutional Neural Networks, in: IJCAI, 2017, pp. 2110\u20132116.","DOI":"10.24963\/ijcai.2017\/293"},{"key":"10.1016\/j.compbiomed.2022.106367_b31","article-title":"Self-paced learning with diversity","volume":"27","author":"Jiang","year":"2014","journal-title":"Adv. Neural Inf. Process. Syst."},{"issue":"1","key":"10.1016\/j.compbiomed.2022.106367_b32","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1561\/2200000016","article-title":"Distributed optimization and statistical learning via the alternating direction method of multipliers","volume":"3","author":"Boyd","year":"2011","journal-title":"Found. Trends Mach. Learn."},{"key":"10.1016\/j.compbiomed.2022.106367_b33","series-title":"Fixed-Point Algorithms for Inverse Problems in Science and Engineering","first-page":"185","article-title":"Proximal splitting methods in signal processing","author":"Combettes","year":"2011"},{"key":"10.1016\/j.compbiomed.2022.106367_b34","series-title":"Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence","first-page":"339","article-title":"Multi-task feature learning via efficient l2, 1-norm minimization","author":"Liu","year":"2009"},{"key":"10.1016\/j.compbiomed.2022.106367_b35","doi-asserted-by":"crossref","unstructured":"J. Chen, J. Zhou, J. Ye, Integrating low-rank and group-sparse structures for robust multi-task learning, in: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2011, pp. 42\u201350.","DOI":"10.1145\/2020408.2020423"},{"key":"10.1016\/j.compbiomed.2022.106367_b36","doi-asserted-by":"crossref","unstructured":"P. Gong, J. Ye, C. Zhang, Robust multi-task feature learning, in: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2012, pp. 895\u2013903.","DOI":"10.1145\/2339530.2339672"},{"key":"10.1016\/j.compbiomed.2022.106367_b37","doi-asserted-by":"crossref","first-page":"S185","DOI":"10.1016\/j.neurobiolaging.2014.07.045","article-title":"Cortical surface biomarkers for predicting cognitive outcomes using group l2, 1 norm","volume":"36","author":"Yan","year":"2015","journal-title":"Neurobiol. Aging"},{"key":"10.1016\/j.compbiomed.2022.106367_b38","series-title":"Proceedings of the 26th Annual International Conference on Machine Learning","first-page":"457","article-title":"An accelerated gradient method for trace norm minimization","author":"Ji","year":"2009"},{"key":"10.1016\/j.compbiomed.2022.106367_b39","doi-asserted-by":"crossref","unstructured":"L. Sun, C.H. Nguyen, H. Mamitsuka, Multiplicative Sparse Feature Decomposition for Efficient Multi-View Multi-Task Learning., in: IJCAI, 2019, pp. 3506\u20133512.","DOI":"10.24963\/ijcai.2019\/486"},{"key":"10.1016\/j.compbiomed.2022.106367_b40","series-title":"Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019","first-page":"3499","article-title":"Fast and robust multi-view multi-task learning via group sparsity","author":"Sun","year":"2019"},{"issue":"3","key":"10.1016\/j.compbiomed.2022.106367_b41","doi-asserted-by":"crossref","first-page":"691","DOI":"10.3233\/JAD-181113","article-title":"Transcriptome changes in the Alzheimer\u2019s disease middle temporal gyrus: importance of RNA metabolism and mitochondria-associated membrane genes","volume":"70","author":"Piras","year":"2019","journal-title":"J. Alzheimer\u2019s Dis."},{"issue":"3","key":"10.1016\/j.compbiomed.2022.106367_b42","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1016\/S0197-4580(03)00084-8","article-title":"Hippocampus and entorhinal cortex in mild cognitive impairment and early AD","volume":"25","author":"Pennanen","year":"2004","journal-title":"Neurobiol. Aging"},{"key":"10.1016\/j.compbiomed.2022.106367_b43","doi-asserted-by":"crossref","first-page":"557","DOI":"10.1016\/S0006-3223(99)00167-5","article-title":"Hippocampus in Alzheimer\u2019s disease: A 3-year follow-up MRI study","volume":"47","author":"Laakso","year":"2000","journal-title":"Biol. Psychiat."},{"issue":"6","key":"10.1016\/j.compbiomed.2022.106367_b44","doi-asserted-by":"crossref","first-page":"476","DOI":"10.1159\/000327753","article-title":"Corpus callosum atrophy in patients with mild Alzheimer\u2019s disease","volume":"8","author":"Frederiksen","year":"2011","journal-title":"Neurodegenerative Dis."},{"issue":"7","key":"10.1016\/j.compbiomed.2022.106367_b45","article-title":"Disconnection of the right superior parietal lobule from the precuneus is associated with memory impairment in oldest-old Alzheimer\u2019s disease patients","volume":"6","year":"2020","journal-title":"Heliyon"},{"key":"10.1016\/j.compbiomed.2022.106367_b46","series-title":"International Conference on Brain Informatics","first-page":"202","article-title":"Group guided sparse group lasso multi-task learning for cognitive performance prediction of Alzheimer\u2019s disease","author":"Liu","year":"2017"}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482522010757?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482522010757?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2023,2,16]],"date-time":"2023-02-16T00:22:15Z","timestamp":1676506935000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482522010757"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1]]},"references-count":46,"alternative-id":["S0010482522010757"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2022.106367","relation":{},"ISSN":["0010-4825"],"issn-type":[{"value":"0010-4825","type":"print"}],"subject":[],"published":{"date-parts":[[2023,1]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Exploiting task relationships for Alzheimer\u2019s disease cognitive score prediction via multi-task learning","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2022.106367","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"106367"}}