{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T04:12:44Z","timestamp":1740111164566,"version":"3.37.3"},"reference-count":48,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,12,1]],"date-time":"2022-12-01T00:00:00Z","timestamp":1669852800000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100002920","name":"Research Grants Council, University Grants Committee","doi-asserted-by":"publisher","award":["SEG CUHK02"],"id":[{"id":"10.13039\/501100002920","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003452","name":"Innovation and Technology Commission","doi-asserted-by":"publisher","award":["MRP\/ 001\/18X"],"id":[{"id":"10.13039\/501100003452","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004853","name":"Chinese University of Hong Kong","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004853","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2022,12]]},"DOI":"10.1016\/j.compbiomed.2022.106295","type":"journal-article","created":{"date-parts":[[2022,11,9]],"date-time":"2022-11-09T16:09:44Z","timestamp":1668010184000},"page":"106295","update-policy":"https:\/\/doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":6,"special_numbering":"PA","title":["Denoising of three-dimensional fast spin echo magnetic resonance images of knee joints using spatial-variant noise-relevant residual learning of convolution neural network"],"prefix":"10.1016","volume":"151","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-0956-2785","authenticated-orcid":false,"given":"Shutian","family":"Zhao","sequence":"first","affiliation":[]},{"given":"D\u00f3nal G.","family":"Cahill","sequence":"additional","affiliation":[]},{"given":"Siyue","family":"Li","sequence":"additional","affiliation":[]},{"given":"Fan","family":"Xiao","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-5759-0011","authenticated-orcid":false,"given":"Thierry","family":"Blu","sequence":"additional","affiliation":[]},{"given":"James F.","family":"Griffith","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7242-9285","authenticated-orcid":false,"given":"Weitian","family":"Chen","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"year":"2010","series-title":"The Knee: a Comprehensive Review","author":"Scuderi","key":"10.1016\/j.compbiomed.2022.106295_bib1"},{"issue":"4","key":"10.1016\/j.compbiomed.2022.106295_bib2","doi-asserted-by":"crossref","first-page":"512","DOI":"10.1002\/mus.24569","article-title":"Whole\u2010body magnetic resonance imaging evaluation of facioscapulohumeral muscular dystrophy","volume":"52","author":"Leung","year":"2015","journal-title":"Muscle Nerve"},{"year":"2008","series-title":"Hitachi's Prime Fast Spin Echo Technology: Efficacies in Improving Image Quality and Usability","author":"Rt","key":"10.1016\/j.compbiomed.2022.106295_bib3"},{"issue":"6","key":"10.1016\/j.compbiomed.2022.106295_bib4","doi-asserted-by":"crossref","first-page":"823","DOI":"10.1002\/mrm.1910030602","article-title":"RARE imaging: a fast imaging method for clinical MR","volume":"3","author":"Hennig","year":"1986","journal-title":"Magn. Reson. Med."},{"issue":"2","key":"10.1016\/j.compbiomed.2022.106295_bib5","doi-asserted-by":"crossref","first-page":"486","DOI":"10.1148\/radiol.2523090028","article-title":"Knee joint: comprehensive assessment with 3D isotropic resolution fast spin-echo MR imaging\u2014diagnostic performance compared with that of conventional MR imaging at 3.0 T","volume":"252","author":"Kijowski","year":"2009","journal-title":"Radiology"},{"issue":"6","key":"10.1016\/j.compbiomed.2022.106295_bib6","doi-asserted-by":"crossref","first-page":"1417","DOI":"10.1002\/jmri.24315","article-title":"Optimizing isotropic three\u2010dimensional fast spin\u2010echo methods for imaging the knee","volume":"39","author":"Li","year":"2014","journal-title":"J. Magn. Reson. Imag."},{"issue":"2","key":"10.1016\/j.compbiomed.2022.106295_bib7","doi-asserted-by":"crossref","first-page":"176","DOI":"10.1002\/mrm.1910370206","article-title":"The sensitivity of low flip angle RARE imaging","volume":"37","author":"Alsop","year":"1997","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.compbiomed.2022.106295_bib8","doi-asserted-by":"crossref","first-page":"839","DOI":"10.1109\/ICCV.1998.710815","article-title":"Bilateral filtering for gray and color images","author":"Tomasi","year":"1998","journal-title":"Sixth international conference on computer vision (IEEE Cat. No. 98CH36271). IEEE"},{"issue":"1\u20134","key":"10.1016\/j.compbiomed.2022.106295_bib9","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1016\/0167-2789(92)90242-F","article-title":"Nonlinear total variation based noise removal algorithms","volume":"60","author":"Rudin","year":"1992","journal-title":"Phys. Nonlinear Phenom."},{"key":"10.1016\/j.compbiomed.2022.106295_bib10","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1109\/CVPR.2005.38","article-title":"A non-local algorithm for image denoising","volume":"2","author":"Buades","year":"2005","journal-title":"2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05). IEEE"},{"issue":"11","key":"10.1016\/j.compbiomed.2022.106295_bib11","doi-asserted-by":"crossref","first-page":"4311","DOI":"10.1109\/TSP.2006.881199","article-title":"An algorithm for designing overcomplete dictionaries for sparse representation","volume":"54","author":"Aharon","year":"2006","journal-title":"IEEE Trans. Signal Process."},{"issue":"8","key":"10.1016\/j.compbiomed.2022.106295_bib12","doi-asserted-by":"crossref","first-page":"2080","DOI":"10.1109\/TIP.2007.901238","article-title":"Image denoising by sparse 3-D transform-domain collaborative filtering","volume":"16","author":"Dabov","year":"2007","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.compbiomed.2022.106295_bib13","series-title":"Providence, RI","first-page":"2392","article-title":"Image denoising: can plain neural networks compete with BM3D? 2012 IEEE conference on computer vision and pattern recognition,","author":"Burger","year":"2012"},{"key":"10.1016\/j.compbiomed.2022.106295_bib14","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1109\/BMEI.2011.6098330","article-title":"Denoise MRI images using sparse 3D transformation domain collaborative filtering","volume":"1","author":"Lin","year":"2011","journal-title":"2011 4th International Conference on Biomedical Engineering and Informatics (BMEI). IEEE"},{"issue":"1","key":"10.1016\/j.compbiomed.2022.106295_bib15","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1109\/TIP.2012.2210725","article-title":"Nonlocal transform-domain filter for volumetric data denoising and reconstruction","volume":"22","author":"Maggioni","year":"2012","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.compbiomed.2022.106295_bib16","first-page":"1809","article-title":"Noise estimation and removal in MR imaging: the variance-stabilization approach","author":"Foi","year":"2011","journal-title":"IEEE"},{"issue":"6","key":"10.1016\/j.compbiomed.2022.106295_bib17","doi-asserted-by":"crossref","first-page":"2707","DOI":"10.1109\/TIM.2019.2925881","article-title":"Two-stage convolutional neural network for medical noise removal via image decomposition","volume":"69","author":"Chang","year":"2019","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"10.1016\/j.compbiomed.2022.106295_bib18","first-page":"1097","article-title":"Imagenet classification with deep convolutional neural networks","volume":"25","author":"Krizhevsky","year":"2012","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.compbiomed.2022.106295_bib19","first-page":"770","article-title":"Deep residual learning for image recognition","author":"He","year":"2016","journal-title":"Proceedings of the IEEE conference on computer vision and pattern recognition"},{"issue":"10","key":"10.1016\/j.compbiomed.2022.106295_bib20","doi-asserted-by":"crossref","first-page":"4843","DOI":"10.1109\/TIP.2017.2725580","article-title":"Going deeper with contextual CNN for hyperspectral image classification","volume":"26","author":"Lee","year":"2017","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.compbiomed.2022.106295_bib21","first-page":"1646","article-title":"Accurate image super-resolution using very deep convolutional networks","author":"Kim","year":"2016","journal-title":"Proceedings of the IEEE conference on computer vision and pattern recognition"},{"issue":"7","key":"10.1016\/j.compbiomed.2022.106295_bib22","doi-asserted-by":"crossref","first-page":"3142","DOI":"10.1109\/TIP.2017.2662206","article-title":"Beyond a Gaussian denoiser: residual learning of deep cnn for image denoising","volume":"26","author":"Zhang","year":"2017","journal-title":"IEEE Trans. Image Process."},{"key":"10.1016\/j.compbiomed.2022.106295_bib23","first-page":"566","article-title":"Denoising of 3D magnetic resonance images with multi-channel residual learning of convolutional neural network","author":"Jiang","year":"2017","journal-title":"Jpn. J. Radiol."},{"issue":"1","key":"10.1016\/j.compbiomed.2022.106295_bib24","doi-asserted-by":"crossref","first-page":"99","DOI":"10.2463\/mrms.tn.2019-0081","article-title":"Accelerated acquisition of high-resolution diffusion-weighted imaging of the brain with a multi-shot echo-planar sequence: deep-learning-based denoising","volume":"20","author":"Kawamura","year":"2021","journal-title":"Magn. Reson. Med. Sci."},{"key":"10.1016\/j.compbiomed.2022.106295_bib25","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/j.mri.2020.01.005","article-title":"Denoising arterial spin labeling perfusion MRI with deep machine learning","volume":"68","author":"Xie","year":"2020","journal-title":"Magn. Reson. Imaging"},{"key":"10.1016\/j.compbiomed.2022.106295_bib26","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1016\/j.mri.2020.04.006","article-title":"MRI denoising using progressively distribution-based neural network","volume":"71","author":"Li","year":"2020","journal-title":"Magn. Reson. Imaging"},{"key":"10.1016\/j.compbiomed.2022.106295_bib27","series-title":"DeepASL: Kinetic Model Incorporated Loss for Denoising Arterial Spin Labeled MRI via Deep Residual Learning. International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"30","author":"Ulas","year":"2018"},{"key":"10.1016\/j.compbiomed.2022.106295_bib28","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/j.patrec.2020.03.036","article-title":"A convolutional neural network for denoising of magnetic resonance images","volume":"135","author":"Tripathi","year":"2020","journal-title":"Pattern Recogn. Lett."},{"issue":"10","key":"10.1016\/j.compbiomed.2022.106295_bib29","doi-asserted-by":"crossref","first-page":"1157","DOI":"10.1016\/S0730-725X(96)00219-6","article-title":"Quantification and improvement of the signal-to-noise ratio in a magnetic resonance image acquisition procedure","volume":"14","author":"Sijbers","year":"1996","journal-title":"Magn. Reson. Imaging"},{"issue":"5","key":"10.1016\/j.compbiomed.2022.106295_bib30","doi-asserted-by":"crossref","first-page":"852","DOI":"10.1002\/mrm.1910380524","article-title":"Signal\u2010to\u2010noise measurements in magnitude images from NMR phased arrays","volume":"38","author":"Constantinides","year":"1997","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.compbiomed.2022.106295_bib31","doi-asserted-by":"crossref","first-page":"160","DOI":"10.1109\/BMEI.2011.6098280","article-title":"Automatic noise removal and effect of nEX setting on magnetic resonance images","volume":"1","author":"Ting","year":"2011","journal-title":"2011 4th International Conference on Biomedical Engineering and Informatics (BMEI). IEEE"},{"issue":"6","key":"10.1016\/j.compbiomed.2022.106295_bib32","doi-asserted-by":"crossref","first-page":"910","DOI":"10.1002\/mrm.1910340618","article-title":"The Rician distribution of noisy MRI data","volume":"34","author":"Gudbjartsson","year":"1995","journal-title":"Magn. Reson. Med."},{"issue":"3","key":"10.1016\/j.compbiomed.2022.106295_bib33","doi-asserted-by":"crossref","first-page":"281","DOI":"10.1016\/j.mri.2013.12.001","article-title":"Noise estimation in parallel MRI: GRAPPA and SENSE","volume":"32","author":"Aja-Fern\u00e1ndez","year":"2014","journal-title":"Magn. Reson. Imaging"},{"issue":"4","key":"10.1016\/j.compbiomed.2022.106295_bib34","doi-asserted-by":"crossref","first-page":"1195","DOI":"10.1002\/mrm.22701","article-title":"Statistical noise analysis in GRAPPA using a parametrized noncentral Chi approximation model","volume":"65","author":"Aja\u2010Fern\u00e1ndez","year":"2011","journal-title":"Magn. Reson. Med."},{"key":"10.1016\/j.compbiomed.2022.106295_bib35","series-title":"2012 19th IEEE International Conference on Image Processing. IEEE","first-page":"1477","article-title":"A comprehensive evaluation of full reference image quality assessment algorithms","author":"Zhang","year":"2012"},{"issue":"4","key":"10.1016\/j.compbiomed.2022.106295_bib36","doi-asserted-by":"crossref","first-page":"600","DOI":"10.1109\/TIP.2003.819861","article-title":"Image quality assessment: from error visibility to structural similarity","volume":"13","author":"Wang","year":"2004","journal-title":"IEEE Trans. Image Process."},{"issue":"1","key":"10.1016\/j.compbiomed.2022.106295_bib37","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1109\/TCI.2016.2644865","article-title":"Loss functions for image restoration with neural networks","volume":"3","author":"Zhao","year":"2016","journal-title":"IEEE Transactions on computational imaging"},{"key":"10.1016\/j.compbiomed.2022.106295_bib38","series-title":"Image Quality Metrics: PSNR vs. SSIM. 2010 20th International Conference On Pattern Recognition","first-page":"2366","author":"Hor\u00e9","year":"2010"},{"key":"10.1016\/j.compbiomed.2022.106295_bib39","first-page":"1097","article-title":"Imagenet classification with deep convolutional neural networks","volume":"25","author":"Krizhevsky","year":"2012","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"10.1016\/j.compbiomed.2022.106295_bib40","series-title":"2019 IEEE International Conference on Industrial Technology (ICIT)","first-page":"853","article-title":"An Efficient Hand Gesture Recognition System Based on Deep CNN","author":"Chung","year":"2019"},{"issue":"21","key":"10.1016\/j.compbiomed.2022.106295_bib41","doi-asserted-by":"crossref","first-page":"14751","DOI":"10.1007\/s11042-019-7240-1","article-title":"Chinese medical question answer selection via hybrid models based on CNN and GRU","volume":"79","author":"Zhang","year":"2020","journal-title":"Multimed. Tool. Appl."},{"key":"10.1016\/j.compbiomed.2022.106295_bib42","first-page":"455","article-title":"3D MRI of the knee","volume":"vol. 25","author":"Altahawi","year":"2021"},{"issue":"11","key":"10.1016\/j.compbiomed.2022.106295_bib43","first-page":"3441","article-title":"3D-imaging of the knee with an optimized 3D-FSE-sequence and a 15-channel knee-coil","volume":"81","author":"Notohamiprodjo","year":"2012","journal-title":"EJR (Eur. J. Radiol.)"},{"key":"10.1016\/j.compbiomed.2022.106295_bib45","first-page":"231","article-title":"3D quantitative imaging of T1rho and T2","author":"Chen","year":"2011","journal-title":"Proceedings of the 19th Annual Meeting of ISMRM"},{"issue":"10","key":"10.1016\/j.compbiomed.2022.106295_bib46","doi-asserted-by":"crossref","first-page":"1559","DOI":"10.1016\/j.joca.2014.06.001","article-title":"Variability of CubeQuant T1\u03c1, quantitative DESS T2, and cones sodium MRI in knee cartilage","volume":"22","author":"Jordan","year":"2014","journal-title":"Osteoarthritis Cartilage"},{"issue":"5","key":"10.1016\/j.compbiomed.2022.106295_bib47","doi-asserted-by":"crossref","first-page":"586","DOI":"10.1118\/1.595679","article-title":"Noise and filtration in magnetic resonance imaging","volume":"12","author":"McVeigh","year":"1985","journal-title":"Med. Phys. (Woodbury)"},{"issue":"2","key":"10.1016\/j.compbiomed.2022.106295_bib48","first-page":"425","article-title":"The sensitivity of the zeugmatographic experiment involving human samples","volume":"34","author":"Hoult","year":"1979","journal-title":"J. Magn. Reson."},{"issue":"12","key":"10.1016\/j.compbiomed.2022.106295_bib49","doi-asserted-by":"crossref","first-page":"7177","DOI":"10.1109\/TGRS.2017.2743222","article-title":"Complex-valued convolutional neural network and its application in polarimetric SAR image classification","volume":"55","author":"Zhang","year":"2017","journal-title":"IEEE Trans. Geosci. Rem. Sens."}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482522010034?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482522010034?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,12,22]],"date-time":"2022-12-22T19:09:24Z","timestamp":1671736164000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482522010034"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,12]]},"references-count":48,"alternative-id":["S0010482522010034"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2022.106295","relation":{},"ISSN":["0010-4825"],"issn-type":[{"type":"print","value":"0010-4825"}],"subject":[],"published":{"date-parts":[[2022,12]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Denoising of three-dimensional fast spin echo magnetic resonance images of knee joints using spatial-variant noise-relevant residual learning of convolution neural network","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2022.106295","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"106295"}}