{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T06:46:58Z","timestamp":1726469218626},"reference-count":68,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100003725","name":"National Research Foundation of Korea","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003725","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002701","name":"Ministry of Education","doi-asserted-by":"publisher","award":["2021R1A6A3A01088445"],"id":[{"id":"10.13039\/501100002701","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2022,9]]},"DOI":"10.1016\/j.compbiomed.2022.105914","type":"journal-article","created":{"date-parts":[[2022,8,7]],"date-time":"2022-08-07T13:52:15Z","timestamp":1659880335000},"page":"105914","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":5,"special_numbering":"C","title":["Automated landmark identification for diagnosis of the deformity using a cascade convolutional neural network (FlatNet) on weight-bearing lateral radiographs of the foot"],"prefix":"10.1016","volume":"148","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-6946-1428","authenticated-orcid":false,"given":"Seung Min","family":"Ryu","sequence":"first","affiliation":[]},{"given":"Keewon","family":"Shin","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4158-0529","authenticated-orcid":false,"given":"Soo Wung","family":"Shin","sequence":"additional","affiliation":[]},{"given":"Sun Ho","family":"Lee","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6858-6672","authenticated-orcid":false,"given":"Su Min","family":"Seo","sequence":"additional","affiliation":[]},{"given":"Seung-uk","family":"Cheon","sequence":"additional","affiliation":[]},{"given":"Seung-Ah","family":"Ryu","sequence":"additional","affiliation":[]},{"given":"Jun-Sik","family":"Kim","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8150-933X","authenticated-orcid":false,"given":"Sunghwan","family":"Ji","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3438-2217","authenticated-orcid":false,"given":"Namkug","family":"Kim","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compbiomed.2022.105914_bib1","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1053\/j.jfas.2004.12.001","article-title":"Practice guideline adult flatfoot, diagnosis and treatment of adult flatfoot","volume":"44","author":"Lee","year":"2005","journal-title":"J. Foot Ankle Surg."},{"key":"10.1016\/j.compbiomed.2022.105914_bib2","doi-asserted-by":"crossref","first-page":"329","DOI":"10.1016\/j.cpm.2014.03.005","article-title":"The flexible adult flatfoot: anatomy and pathomechanics","volume":"31","author":"Walters","year":"2014","journal-title":"Clin. Podiatr. Med. Surg."},{"key":"10.1016\/j.compbiomed.2022.105914_bib3","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1302\/0301-620X.67B1.3968149","article-title":"The diagnosis of flat foot in the child","volume":"67","author":"Rose","year":"1985","journal-title":"J. Bone Joint Surg. Br."},{"key":"10.1016\/j.compbiomed.2022.105914_bib4","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1053\/j.jfas.2004.09.013","article-title":"F. Clinical practice guideline pediatric flatfoot panel of the American college of, S. Ankle, diagnosis and treatment of pediatric flatfoot","volume":"43","author":"Harris","year":"2004","journal-title":"J. Foot Ankle Surg."},{"key":"10.1016\/j.compbiomed.2022.105914_bib5","doi-asserted-by":"crossref","first-page":"e7","DOI":"10.2106\/JBJS.RVW.16.00116","article-title":"Adult-acquired flatfoot deformity: etiology, diagnosis, and management","volume":"5","author":"Abousayed","year":"2017","journal-title":"JBJS Rev."},{"key":"10.1016\/j.compbiomed.2022.105914_bib6","doi-asserted-by":"crossref","first-page":"363","DOI":"10.1177\/1938640018810412","article-title":"The influence of percentage weight-bearing on foot radiographs","volume":"12","author":"Shelton","year":"2019","journal-title":"Foot Ankle Spec."},{"key":"10.1016\/j.compbiomed.2022.105914_bib7","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1186\/s13018-019-1094-0","article-title":"Surgical procedures for treatment of adult acquired flatfoot deformity: a network meta-analysis","volume":"14","author":"Tao","year":"2019","journal-title":"J. Orthop. Surg. Res."},{"key":"10.1016\/j.compbiomed.2022.105914_bib8","doi-asserted-by":"crossref","first-page":"646","DOI":"10.1016\/j.fas.2018.07.007","article-title":"Inter- and intraclass correlations for three standard foot radiographic measurements for plantar surface angles. Which measure is most reliable?","volume":"25","author":"Hohmann","year":"2019","journal-title":"Foot Ankle Surg."},{"key":"10.1016\/j.compbiomed.2022.105914_bib9","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1177\/107110078200200407","article-title":"Graphing the adult foot and ankle","volume":"2","author":"Gould","year":"1982","journal-title":"Foot Ankle"},{"key":"10.1016\/j.compbiomed.2022.105914_bib10","doi-asserted-by":"crossref","first-page":"769","DOI":"10.1097\/01.bpo.0000173244.74065.e4","article-title":"Quantitative segmental analysis of weight-bearing radiographs of the foot and ankle for children: normal alignment","volume":"25","author":"Davids","year":"2005","journal-title":"J. Pediatr. Orthop."},{"key":"10.1016\/j.compbiomed.2022.105914_bib11","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1177\/107110078000100304","article-title":"Radiographic measurements of the normal adult foot","volume":"1","author":"Steel","year":"1980","journal-title":"Foot Ankle"},{"key":"10.1016\/j.compbiomed.2022.105914_bib12","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1177\/107110078300400202","article-title":"Lateral talocalcaneal angle in assessment of subtalar valgus: follow-up of seventy Grice-Green arthrodeses","volume":"4","author":"Aronson","year":"1983","journal-title":"Foot Ankle"},{"key":"10.1016\/j.compbiomed.2022.105914_bib13","doi-asserted-by":"crossref","first-page":"2163","DOI":"10.2106\/00004623-200710000-00010","article-title":"The shape of the lateral edge of the first metatarsal head as a risk factor for recurrence of hallux valgus","volume":"89","author":"Okuda","year":"2007","journal-title":"J. Bone Joint Surg. Am."},{"key":"10.1016\/j.compbiomed.2022.105914_bib14","doi-asserted-by":"crossref","first-page":"796","DOI":"10.3113\/FAI.2011.0796","article-title":"Radiographic evaluation of foot structure following fifth metatarsal stress fracture","volume":"32","author":"Lee","year":"2011","journal-title":"Foot Ankle Int."},{"key":"10.1016\/j.compbiomed.2022.105914_bib15","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.foot.2019.03.003","article-title":"Reproducibility of radiographic methods for assessing longitudinal tarsal axes: Part 1: consecutive case study","volume":"40","author":"Kido","year":"2019","journal-title":"Foot (Edinb)"},{"key":"10.1016\/j.compbiomed.2022.105914_bib16","doi-asserted-by":"crossref","first-page":"7618","DOI":"10.1038\/s41598-021-87141-x","article-title":"Deep learning approach for automatic landmark detection and alignment analysis in whole-spine lateral radiographs","volume":"11","author":"Yeh","year":"2021","journal-title":"Sci. Rep."},{"key":"10.1016\/j.compbiomed.2022.105914_bib17","doi-asserted-by":"crossref","DOI":"10.1259\/dmfr.20190107","article-title":"The use and performance of artificial intelligence applications in dental and maxillofacial radiology: a systematic review","volume":"49","author":"Hung","year":"2020","journal-title":"Dentomaxillofacial Radiol."},{"year":"2021","series-title":"Accuracy of Automated Identification of Lateral Cephalometric Landmarks Using Cascade Convolutional Neural Networks on Lateral Cephalograms from Nationwide Multi-Centers","author":"Kim","key":"10.1016\/j.compbiomed.2022.105914_bib18"},{"key":"10.1016\/j.compbiomed.2022.105914_bib19","doi-asserted-by":"crossref","first-page":"4299","DOI":"10.1007\/s00784-021-03990-w","article-title":"Deep learning for cephalometric landmark detection: systematic review and meta-analysis","volume":"25","author":"Schwendicke","year":"2021","journal-title":"Clin. Oral Invest."},{"key":"10.1016\/j.compbiomed.2022.105914_bib20","doi-asserted-by":"crossref","first-page":"540","DOI":"10.1109\/TMI.2018.2867261","article-title":"Recalibrating fully convolutional networks with spatial and channel \"squeeze and excitation\" blocks","volume":"38","author":"Roy","year":"2019","journal-title":"IEEE Trans. Med. Imag."},{"key":"10.1016\/j.compbiomed.2022.105914_bib21","doi-asserted-by":"crossref","first-page":"7925","DOI":"10.1038\/s41598-021-87261-4","article-title":"Comparing intra-observer variation and external variations of a fully automated cephalometric analysis with a cascade convolutional neural net","volume":"11","author":"Kim","year":"2021","journal-title":"Sci. Rep."},{"key":"10.1016\/j.compbiomed.2022.105914_bib22","series-title":"Proceedings of the Third Conference on Medical Imaging with Deep Learning, PMLR, Proceedings of Machine Learning Research","first-page":"262","article-title":"Locating cephalometric X-ray landmarks with foveated pyramid attention","author":"Gilmour","year":"2020"},{"key":"10.1016\/j.compbiomed.2022.105914_bib23","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1590\/S0103-64402002000300012","article-title":"Evaluation of the reliability of computerized profile cephalometric analysis","volume":"13","author":"Ferreira","year":"2002","journal-title":"Braz. Dent. J."},{"key":"10.1016\/j.compbiomed.2022.105914_bib24","article-title":"Fully automated quantitative cephalometry using convolutional neural networks","volume":"4","author":"Arik","year":"2017","journal-title":"J. Med. Imaging (Bellingham)"},{"key":"10.1016\/j.compbiomed.2022.105914_bib25","doi-asserted-by":"crossref","DOI":"10.1038\/srep33581","article-title":"Fully automatic system for accurate localisation and analysis of cephalometric landmarks in lateral cephalograms","volume":"6","author":"Lindner","year":"2016","journal-title":"Sci. Rep."},{"key":"10.1016\/j.compbiomed.2022.105914_bib26","doi-asserted-by":"crossref","DOI":"10.1016\/j.ejrad.2020.109303","article-title":"Feasibility of automatic measurements of hip joints based on pelvic radiography and a deep learning algorithm","volume":"132","author":"Yang","year":"2020","journal-title":"Eur. J. Radiol."},{"key":"10.1016\/j.compbiomed.2022.105914_bib27","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2021.106124","article-title":"Automatic analysis system of calcaneus radiograph: rotation-invariant landmark detection for calcaneal angle measurement, fracture identification and fracture region segmentation","volume":"206","author":"Guo","year":"2021","journal-title":"Comput. Methods Progr. Biomed."},{"key":"10.1016\/j.compbiomed.2022.105914_bib28","doi-asserted-by":"crossref","first-page":"578","DOI":"10.1038\/s42256-019-0126-0","article-title":"Automated abnormality detection in lower extremity radiographs using deep learning","volume":"1","author":"Varma","year":"2019","journal-title":"Nat. Mach. Intell."},{"key":"10.1016\/j.compbiomed.2022.105914_bib29","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"415","article-title":"Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3D conditional random fields","author":"Christ","year":"2016"},{"key":"10.1016\/j.compbiomed.2022.105914_bib30","doi-asserted-by":"crossref","first-page":"318","DOI":"10.1109\/TPAMI.2018.2858826","article-title":"Focal loss for dense object detection","volume":"42","author":"Lin","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"10.1016\/j.compbiomed.2022.105914_bib31","first-page":"8024","article-title":"PyTorch: An Imperative Style, High-Performance Deep Learning Library","volume":"32","author":"Paszke","year":"2019"},{"key":"10.1016\/j.compbiomed.2022.105914_bib32","series-title":"Efficientnet: Rethinking Model Scaling for Convolutional Neural Networks","first-page":"6105","author":"Tan","year":"2019"},{"key":"10.1016\/j.compbiomed.2022.105914_bib33","series-title":"Convolutional Networks for Biomedical Image Segmentation, International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"234","author":"Ronneberger","year":"2015"},{"key":"10.1016\/j.compbiomed.2022.105914_bib34","series-title":"Journal of Physics: Conference Series","article-title":"Comparison of backbones for semantic segmentation network","author":"Zhang","year":"2020"},{"key":"10.1016\/j.compbiomed.2022.105914_bib35","series-title":"Proceedings of the 27th ACM International Conference on Multimedia","first-page":"2276","article-title":"The VIA annotation software for images, audio and video","author":"Dutta","year":"2019"},{"key":"10.1016\/j.compbiomed.2022.105914_bib36","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1016\/j.jcm.2016.02.012","article-title":"A guideline of selecting and reporting intraclass correlation coefficients for reliability research","volume":"15","author":"Koo","year":"2016","journal-title":"J. Chiropr. Med."},{"key":"10.1016\/j.compbiomed.2022.105914_bib37","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1177\/107110078901000105","article-title":"Combined effect of foot arch structure and an orthotic device on stress fractures","volume":"10","author":"Simkin","year":"1989","journal-title":"Foot Ankle"},{"key":"10.1016\/j.compbiomed.2022.105914_bib38","doi-asserted-by":"crossref","first-page":"596","DOI":"10.1302\/0301-620X.100B5.BJJ-2017-1279","article-title":"The inter- and intraobserver reliability for the radiological parameters of flatfoot, before and after surgery","volume":"100-B","author":"Bock","year":"2018","journal-title":"Bone Joint Lett. J"},{"key":"10.1016\/j.compbiomed.2022.105914_bib39","doi-asserted-by":"crossref","first-page":"394","DOI":"10.1177\/107110079801900610","article-title":"Radiographic and clinical classification of acquired midtarsus deformities","volume":"19","author":"Schon","year":"1998","journal-title":"Foot Ankle Int."},{"key":"10.1016\/j.compbiomed.2022.105914_bib40","doi-asserted-by":"crossref","first-page":"2319","DOI":"10.2106\/JBJS.I.01150","article-title":"Reliability and validity of radiographic measurements in hindfoot varus and valgus","volume":"92","author":"Lee","year":"2010","journal-title":"J. Bone Joint Surg. Am."},{"key":"10.1016\/j.compbiomed.2022.105914_bib41","doi-asserted-by":"crossref","first-page":"820","DOI":"10.1177\/107110070502601006","article-title":"Radiographic assessment of adult flatfoot","volume":"26","author":"Younger","year":"2005","journal-title":"Foot Ankle Int."},{"key":"10.1016\/j.compbiomed.2022.105914_bib42","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1016\/S0003-9993(95)80041-7","article-title":"Measurement of the medial longitudinal arch","volume":"76","author":"Saltzman","year":"1995","journal-title":"Arch. Phys. Med. Rehabil."},{"key":"10.1016\/j.compbiomed.2022.105914_bib43","series-title":"Proceedings of the 30th International Conference on Neural Information Processing Systems","first-page":"4905","article-title":"Understanding the effective receptive field in deep convolutional neural networks","author":"Luo","year":"2016"},{"year":"2022","series-title":"Visual Attention Methods in Deep Learning: an In-Depth Survey","author":"Hassanin","key":"10.1016\/j.compbiomed.2022.105914_bib44"},{"key":"10.1016\/j.compbiomed.2022.105914_bib45","doi-asserted-by":"crossref","first-page":"2465","DOI":"10.1002\/sim.4780132310","article-title":"A critical discussion of intraclass correlation coefficients","volume":"13","author":"Muller","year":"1994","journal-title":"Stat. Med."},{"key":"10.1016\/j.compbiomed.2022.105914_bib46","doi-asserted-by":"crossref","first-page":"701","DOI":"10.1016\/j.jclinepi.2010.12.001","article-title":"The difference between reliability and agreement","volume":"64","author":"Kottner","year":"2011","journal-title":"J. Clin. Epidemiol."},{"key":"10.1016\/j.compbiomed.2022.105914_bib47","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0219854","article-title":"Intraclass correlation - a discussion and demonstration of basic features","volume":"14","author":"Liljequist","year":"2019","journal-title":"PLoS One"},{"key":"10.1016\/j.compbiomed.2022.105914_bib48","doi-asserted-by":"crossref","first-page":"745","DOI":"10.1007\/s13244-018-0645-y","article-title":"Artificial intelligence as a medical device in radiology: ethical and regulatory issues in Europe and the United States","volume":"9","author":"Pesapane","year":"2018","journal-title":"Insights Imag."},{"key":"10.1016\/j.compbiomed.2022.105914_bib49","doi-asserted-by":"crossref","DOI":"10.1016\/j.otsr.2020.102772","article-title":"Weight-bearing CT in foot and ankle pathology","volume":"107","author":"Lintz","year":"2021","journal-title":"Orthop. Traumatol. Surg. Res."},{"key":"10.1016\/j.compbiomed.2022.105914_bib50","doi-asserted-by":"crossref","DOI":"10.1038\/s41598-021-95708-x","article-title":"Angular and linear measurements of adult flexible flatfoot via weight-bearing CT scans and 3D bone reconstruction tools","volume":"11","author":"Ortolani","year":"2021","journal-title":"Sci. Rep."},{"key":"10.1016\/j.compbiomed.2022.105914_bib51","doi-asserted-by":"crossref","first-page":"168","DOI":"10.1016\/j.fas.2020.03.013","article-title":"Techniques for 3D foot bone orientation angles in weight-bearing from cone-beam computed tomography","volume":"27","author":"Carrara","year":"2021","journal-title":"Foot Ankle Surg."},{"key":"10.1016\/j.compbiomed.2022.105914_bib52","doi-asserted-by":"crossref","DOI":"10.1016\/j.ejrad.2021.109674","article-title":"Geometric 3D analyses of the foot and ankle using weight-bearing and non weight-bearing cone-beam CT images: the new standard?","volume":"138","author":"Broos","year":"2021","journal-title":"Eur. J. Radiol."},{"key":"10.1016\/j.compbiomed.2022.105914_bib53","series-title":"International Conference on Medical Image Computing and Computer-Assisted Intervention","first-page":"540","article-title":"An attention-guided deep regression model for landmark detection in cephalograms","author":"Zhong","year":"2019"},{"key":"10.1016\/j.compbiomed.2022.105914_bib54","article-title":"Automatic cephalometric landmark detection on X-ray images using a deep-learning method","volume":"10","author":"Song","year":"2020","journal-title":"Appl Sci-Basel"},{"key":"10.1016\/j.compbiomed.2022.105914_bib55","doi-asserted-by":"crossref","first-page":"112633","DOI":"10.1109\/ACCESS.2020.3002939","article-title":"CephaNN: a multi-head attention network for cephalometric landmark detection","volume":"8","author":"Qian","year":"2020","journal-title":"IEEE Access"},{"key":"10.1016\/j.compbiomed.2022.105914_bib56","doi-asserted-by":"crossref","first-page":"903","DOI":"10.2319\/022019-127.1","article-title":"Automated identification of cephalometric landmarks: Part 1-Comparisons between the latest deep-learning methods YOLOV3 and SSD","volume":"89","author":"Park","year":"2019","journal-title":"Angle Orthod."},{"year":"2019","series-title":"Deep Learning Based Cephalometric Landmark Identification Using Landmark-dependent Multi-Scale Patches","author":"Lee","key":"10.1016\/j.compbiomed.2022.105914_bib57"},{"key":"10.1016\/j.compbiomed.2022.105914_bib58","doi-asserted-by":"crossref","DOI":"10.1186\/s12903-020-01256-7","article-title":"Automated cephalometric landmark detection with confidence regions using Bayesian convolutional neural networks","volume":"20","author":"Lee","year":"2020","journal-title":"BMC Oral Health"},{"key":"10.1016\/j.compbiomed.2022.105914_bib59","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2020.105513","article-title":"Web-based fully automated cephalometric analysis by deep learning","volume":"194","author":"Kim","year":"2020","journal-title":"Comput. Methods Progr. Biomed."},{"key":"10.1016\/j.compbiomed.2022.105914_bib60","doi-asserted-by":"crossref","first-page":"69","DOI":"10.2319\/022019-129.1","article-title":"Automated identification of cephalometric landmarks: Part 2-Might it be better than human?","volume":"90","author":"Hwang","year":"2020","journal-title":"Angle Orthod."},{"key":"10.1016\/j.compbiomed.2022.105914_bib61","first-page":"139","article-title":"Frontal cephalometric landmarking: humans vs artificial neural networks","volume":"23","author":"Muraev","year":"2020","journal-title":"Int. J. Comput. Dent."},{"key":"10.1016\/j.compbiomed.2022.105914_bib62","article-title":"Automatic 3D landmarking model using patch-based deep neural networks for CT image of oral and maxillofacial surgery","volume":"16","author":"Ma","year":"2020","journal-title":"Int. J. Med. Robot Comp."},{"key":"10.1016\/j.compbiomed.2022.105914_bib63","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6560\/ab7a71","article-title":"Learning-based local-to-global landmark annotation for automatic 3D cephalometry","volume":"65","author":"Yun","year":"2020","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.compbiomed.2022.105914_bib64","doi-asserted-by":"crossref","DOI":"10.1088\/1361-6560\/ab00c9","article-title":"Automatic 3D cephalometric annotation system using shadowed 2D image-based machine learning","volume":"64","author":"Lee","year":"2019","journal-title":"Phys. Med. Biol."},{"key":"10.1016\/j.compbiomed.2022.105914_bib65","doi-asserted-by":"crossref","DOI":"10.1016\/j.cmpb.2021.106507","article-title":"A fully automatic system to assess foot collapse on lateral weight-bearing foot radiographs: a pilot study","volume":"213","author":"Lauder","year":"2022","journal-title":"Comput. Methods Progr. Biomed."},{"key":"10.1016\/j.compbiomed.2022.105914_bib66","article-title":"Image segmentation algorithm of lung cancer based on neural network model","volume":"39","author":"He","year":"2022","journal-title":"Expet Syst."},{"key":"10.1016\/j.compbiomed.2022.105914_bib67","doi-asserted-by":"crossref","first-page":"514","DOI":"10.1109\/JBHI.2020.2997760","article-title":"Multi-scale context-guided deep network for automated lesion segmentation with endoscopy images of gastrointestinal tract","volume":"25","author":"Wang","year":"2021","journal-title":"Ieee J. Biomed. Health"},{"key":"10.1016\/j.compbiomed.2022.105914_bib68","doi-asserted-by":"crossref","first-page":"682","DOI":"10.5603\/FM.a2017.0049","article-title":"How the three arches of the foot intercorrelate","volume":"76","author":"Gwani","year":"2017","journal-title":"Folia Morphol."}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482522006576?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482522006576?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,12,22]],"date-time":"2022-12-22T18:51:04Z","timestamp":1671735064000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482522006576"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,9]]},"references-count":68,"alternative-id":["S0010482522006576"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2022.105914","relation":{},"ISSN":["0010-4825"],"issn-type":[{"type":"print","value":"0010-4825"}],"subject":[],"published":{"date-parts":[[2022,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Automated landmark identification for diagnosis of the deformity using a cascade convolutional neural network (FlatNet) on weight-bearing lateral radiographs of the foot","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2022.105914","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105914"}}