{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:41:07Z","timestamp":1732041667463},"reference-count":83,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"funder":[{"DOI":"10.13039\/501100011665","name":"Deanship of Scientific Research, King Saud University","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100011665","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100009392","name":"Prince Sattam bin Abdulaziz University","doi-asserted-by":"publisher","award":["2021\/03\/18256"],"id":[{"id":"10.13039\/100009392","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2022,9]]},"DOI":"10.1016\/j.compbiomed.2022.105834","type":"journal-article","created":{"date-parts":[[2022,7,5]],"date-time":"2022-07-05T15:23:10Z","timestamp":1657034590000},"page":"105834","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":6,"special_numbering":"C","title":["Fluid structure computational model of simulating mitral valve motion in a contracting left ventricle"],"prefix":"10.1016","volume":"148","author":[{"given":"Yousef","family":"Alharbi","sequence":"first","affiliation":[]},{"given":"Amr","family":"Al Abed","sequence":"additional","affiliation":[]},{"given":"Azam Ahmad","family":"Bakir","sequence":"additional","affiliation":[]},{"given":"Nigel H.","family":"Lovell","sequence":"additional","affiliation":[]},{"given":"David W.M.","family":"Muller","sequence":"additional","affiliation":[]},{"given":"James","family":"Otton","sequence":"additional","affiliation":[]},{"given":"Socrates","family":"Dokos","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"issue":"9540","key":"10.1016\/j.compbiomed.2022.105834_b1","doi-asserted-by":"crossref","first-page":"1005","DOI":"10.1016\/S0140-6736(06)69208-8","article-title":"Burden of valvular heart diseases: a population-based study","volume":"368","author":"Nkomo","year":"2006","journal-title":"Lancet"},{"issue":"5","key":"10.1016\/j.compbiomed.2022.105834_b2","doi-asserted-by":"crossref","first-page":"1049","DOI":"10.1007\/s10439-013-0755-0","article-title":"Vortices formed on the mitral valve tips aid normal left ventricular filling","volume":"41","author":"Charonko","year":"2013","journal-title":"Ann. Biomed. Eng."},{"issue":"12","key":"10.1016\/j.compbiomed.2022.105834_b3","doi-asserted-by":"crossref","DOI":"10.1063\/1.4904094","article-title":"Effect of the mitral valve on diastolic flow patterns","volume":"26","author":"Seo","year":"2014","journal-title":"Phys. Fluids"},{"issue":"2","key":"10.1016\/j.compbiomed.2022.105834_b4","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1080\/10255842.2010.517200","article-title":"FSI simulation of asymmetric mitral valve dynamics during diastolic filling","volume":"15","author":"Dahl","year":"2012","journal-title":"Comput. Methods Biomech. Biomed. Eng."},{"issue":"4","key":"10.1016\/j.compbiomed.2022.105834_b5","doi-asserted-by":"crossref","first-page":"1268","DOI":"10.1016\/j.athoracsur.2004.04.014","article-title":"An annular prosthesis for the treatment of functional mitral regurgitation: finite element model analysis of a dog bone-shaped ring prosthesis","volume":"79","author":"Maisano","year":"2005","journal-title":"Ann. Thorac. Surg."},{"issue":"1879","key":"10.1016\/j.compbiomed.2022.105834_b6","doi-asserted-by":"crossref","first-page":"3411","DOI":"10.1098\/rsta.2008.0095","article-title":"Mitral valve finite-element modelling from ultrasound data: a pilot study for a new approach to understand mitral function and clinical scenarios","volume":"366","author":"Votta","year":"2008","journal-title":"Phil. Trans. R. Soc. A"},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105834_b7","first-page":"399","article-title":"Left ventricular outflow tract obstruction after bioprosthetic mitral valve replacement with posterior mitral leaflet preservation","volume":"33","author":"Guler","year":"2006","journal-title":"Tex. Heart. Inst. J."},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105834_b8","first-page":"339","article-title":"Strongly coupled fluid-structure interaction cardiovascular analysis with the effect of peripheral network","volume":"63","author":"Toma","year":"2011","journal-title":"Seisan Kenkyu"},{"issue":"7","key":"10.1016\/j.compbiomed.2022.105834_b9","doi-asserted-by":"crossref","first-page":"1445","DOI":"10.1007\/s10439-012-0717-y","article-title":"Modeling hemodynamics in vascular networks using a geometrical multiscale approach: numerical aspects","volume":"41","author":"Taelman","year":"2013","journal-title":"Ann. Biomed. Eng."},{"issue":"6","key":"10.1016\/j.compbiomed.2022.105834_b10","first-page":"772","article-title":"Two-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics","volume":"12","author":"Cheng","year":"2003","journal-title":"J. Heart. Valve. Dis."},{"issue":"2","key":"10.1016\/j.compbiomed.2022.105834_b11","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1007\/s10047-006-0365-9","article-title":"Transient fluid-structure coupling for simulation of a trileaflet heart valve using weak coupling","volume":"10","author":"Morsi","year":"2007","journal-title":"J. Artif. Organs."},{"issue":"4","key":"10.1016\/j.compbiomed.2022.105834_b12","doi-asserted-by":"crossref","first-page":"450","DOI":"10.1080\/10255842.2012.688818","article-title":"Evaluation of a transient, simultaneous, arbitrary Lagrange-Euler based multi-physics method for simulating the mitral heart valve","volume":"17","author":"Espino","year":"2014","journal-title":"Comput. Methods Biomech. Biomed. Eng."},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105834_b13","first-page":"326","article-title":"Finite element analysis of the mitral valve","volume":"2","author":"Kunzelman","year":"1993","journal-title":"J. Heart. Valve. Dis."},{"issue":"9","key":"10.1016\/j.compbiomed.2022.105834_b14","doi-asserted-by":"crossref","first-page":"1057","DOI":"10.1016\/j.medengphy.2010.07.008","article-title":"Mitral valve dynamics in structural and fluid-structure interaction models","volume":"32","author":"Lau","year":"2010","journal-title":"Med. Eng. Phys."},{"issue":"12","key":"10.1016\/j.compbiomed.2022.105834_b15","doi-asserted-by":"crossref","first-page":"2460","DOI":"10.1016\/j.jbiomech.2004.10.005","article-title":"Structural effects of an innovative surgical technique to repair heart valve defects","volume":"38","author":"Dal\u00a0Pan","year":"2005","journal-title":"J. Biomech."},{"key":"10.1016\/j.compbiomed.2022.105834_b16","article-title":"Development of a fluid-structure interaction model to simulate mitral valve malcoaptation","author":"Hassani","year":"2018","journal-title":"Perfusion"},{"issue":"1","key":"10.1016\/j.compbiomed.2022.105834_b17","doi-asserted-by":"crossref","first-page":"6187","DOI":"10.1038\/s41598-018-24469-x","article-title":"Synergy between diastolic mitral valve function and left ventricular flow aids in valve closure and blood transport during systole","volume":"8","author":"Govindarajan","year":"2018","journal-title":"Sci. Rep."},{"issue":"1484","key":"10.1016\/j.compbiomed.2022.105834_b18","doi-asserted-by":"crossref","first-page":"1393","DOI":"10.1098\/rstb.2007.2123","article-title":"Fluid\u2013structure interaction models of the mitral valve: function in normal and pathological states","volume":"362","author":"Kunzelman","year":"2007","journal-title":"Phil. Trans. R. Soc. B"},{"issue":"1","key":"10.1016\/j.compbiomed.2022.105834_b19","doi-asserted-by":"crossref","first-page":"17306","DOI":"10.1038\/s41598-018-35555-5","article-title":"New insights into mitral heart valve prolapse after chordae rupture through fluid-structure interaction computational modeling","volume":"8","author":"Caballero","year":"2018","journal-title":"Sci. Rep."},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105834_b20","doi-asserted-by":"crossref","first-page":"619","DOI":"10.1007\/s10439-016-1727-y","article-title":"Fluid-structure interaction analysis of ruptured mitral chordae tendineae","volume":"45","author":"Toma","year":"2017","journal-title":"Ann. Biomed. Eng."},{"issue":"13","key":"10.1016\/j.compbiomed.2022.105834_b21","doi-asserted-by":"crossref","first-page":"2409","DOI":"10.1016\/j.jbiomech.2011.06.030","article-title":"Fluid-structure interaction study of the edge-to-edge repair technique on the mitral valve","volume":"44","author":"Lau","year":"2011","journal-title":"J. Biomech."},{"issue":"5","key":"10.1016\/j.compbiomed.2022.105834_b22","first-page":"803","article-title":"Computational fluid dynamic modelling to determine the hemodynamic effects of implanting a transcatheter mitral valve within the left ventricle","volume":"34","author":"de Vecchi","year":"2018","journal-title":"Int. J. Cardiovasc. Imaging."},{"issue":"12","key":"10.1016\/j.compbiomed.2022.105834_b23","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1007\/s11936-018-0694-z","article-title":"Transcatheter mitral valve planning and the neo-LVOT: Utilization of virtual simulation models and 3D printing","volume":"20","author":"Kohli","year":"2018","journal-title":"Curr. Treat. Options. Cardiovasc. Med."},{"key":"10.1016\/j.compbiomed.2022.105834_b24","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/j.ijcard.2018.01.062","article-title":"Numerical simulation study on systolic anterior motion of the mitral valve in hypertrophic obstructive cardiomyopathy","volume":"266","author":"Deng","year":"2018","journal-title":"Int. J. Cardiol."},{"issue":"5","key":"10.1016\/j.compbiomed.2022.105834_b25","doi-asserted-by":"crossref","first-page":"769","DOI":"10.1016\/j.ultrasmedbio.2012.11.009","article-title":"Patient-specific mitral valve closure prediction using 3D echocardiography","volume":"39","author":"Burlina","year":"2013","journal-title":"Ultrasound Med. Biol."},{"issue":"5","key":"10.1016\/j.compbiomed.2022.105834_b26","doi-asserted-by":"crossref","first-page":"934","DOI":"10.1016\/S0735-1097(83)80242-3","article-title":"Standardized intracardiac measurements of two-dimensional echocardiography","volume":"2","author":"Schnittger","year":"1983","journal-title":"J. Am. Coll. Cardiol."},{"issue":"5","key":"10.1016\/j.compbiomed.2022.105834_b27","first-page":"491","article-title":"Anatomic basis for mitral valve modelling","volume":"3","author":"Kunzelman","year":"1994","journal-title":"J. Heart. Valve. Dis."},{"issue":"10","key":"10.1016\/j.compbiomed.2022.105834_b28","doi-asserted-by":"crossref","first-page":"950","DOI":"10.1093\/ehjci\/jet058","article-title":"A three-dimensional echocardiographic study on aortic-mitral coupling in transcatheter aortic valve replacement","volume":"14","author":"Tsang","year":"2013","journal-title":"Eur. Heart. J. Cardiovasc. Imaging."},{"issue":"5","key":"10.1016\/j.compbiomed.2022.105834_b29","doi-asserted-by":"crossref","first-page":"H2466","DOI":"10.1152\/ajpheart.1997.272.5.H2466","article-title":"Laminar structure of the heart: a mathematical model","volume":"272","author":"Legrice","year":"1997","journal-title":"Am. J. Physiol. Heart. Circ .Physiol."},{"issue":"1259","key":"10.1016\/j.compbiomed.2022.105834_b30","article-title":"A multiphysics biventricular cardiac model: Simulations with a left-ventricular assist device","volume":"9","author":"Ahmad\u00a0Bakir","year":"2018","journal-title":"Front. Physiol."},{"issue":"2","key":"10.1016\/j.compbiomed.2022.105834_b31","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/j.jmbbm.2009.05.004","article-title":"On modelling and analysis of healthy and pathological human mitral valves: two case studies","volume":"3","author":"Prot","year":"2010","journal-title":"J. Mech. Behav. Biomed. Mater."},{"issue":"1902","key":"10.1016\/j.compbiomed.2022.105834_b32","doi-asserted-by":"crossref","first-page":"3445","DOI":"10.1098\/rsta.2009.0091","article-title":"Constitutive modelling of passive myocardium: a structurally based framework for material characterization","volume":"367","author":"Holzapfel","year":"2009","journal-title":"Phil. Trans. R. Soc. A"},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105834_b33","doi-asserted-by":"crossref","first-page":"627","DOI":"10.1007\/s10237-013-0523-y","article-title":"Simulation of the contraction of the ventricles in a human heart model including atria and pericardium","volume":"13","author":"Fritz","year":"2014","journal-title":"Biomech. Model. Mechanobiol."},{"issue":"4","key":"10.1016\/j.compbiomed.2022.105834_b34","doi-asserted-by":"crossref","first-page":"516","DOI":"10.1161\/01.CIR.26.4.516","article-title":"Studies on Starling\u2019s law of the heart. VIII. Mechanical properties of human myocardium studied in vivo","volume":"26","author":"Aygen","year":"1962","journal-title":"Circulation","ISSN":"http:\/\/id.crossref.org\/issn\/0009-7322","issn-type":"print"},{"issue":"4","key":"10.1016\/j.compbiomed.2022.105834_b35","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1007\/s00791-002-0081-9","article-title":"Computational model of three-dimensional cardiac electromechanics","volume":"4","author":"Usyk","year":"2002","journal-title":"Comput. Vis. Sci."},{"key":"10.1016\/j.compbiomed.2022.105834_b36","doi-asserted-by":"crossref","unstructured":"Philippe Burlina, Chad Sprouse, Daniel DeMenthon, Anne Jorstad, Radford Juang, Francisco Contijoch, Theodore Abraham, David Yuh, Elliot McVeigh, Patient-Specific Modeling and Analysis of the Mitral Valve Using 3D-TEE, in: Information Processing in Computer-Assisted Interventions, pp. 135\u2013146.","DOI":"10.1007\/978-3-642-13711-2_13"},{"issue":"1","key":"10.1016\/j.compbiomed.2022.105834_b37","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1115\/1.2834305","article-title":"A constitutive law for mitral valve tissue","volume":"120","author":"May-Newman","year":"1998","journal-title":"J. Biomech. Eng."},{"key":"10.1016\/j.compbiomed.2022.105834_b38","doi-asserted-by":"crossref","unstructured":"M.C. Hsu, D. Kamensky, Y. Bazilevs, M.S. Sacks, T.J. Hughes, Fluid-structure interaction analysis of bioprosthetic heart valves: Significance of arterial wall deformation, Comput. Mech. (ISSN: 0178-7675) 54 (4) 1055\u20131071.","DOI":"10.1007\/s00466-014-1059-4"},{"issue":"12","key":"10.1016\/j.compbiomed.2022.105834_b39","doi-asserted-by":"crossref","first-page":"1597","DOI":"10.1002\/cnm.2691","article-title":"A finite strain nonlinear human mitral valve model with fluid-structure interaction","volume":"30","author":"Gao","year":"2014","journal-title":"Int. J. Numer. Method. Biomed. Eng."},{"issue":"4","key":"10.1016\/j.compbiomed.2022.105834_b40","doi-asserted-by":"crossref","first-page":"636","DOI":"10.1016\/S0022-5223(99)70008-5","article-title":"Distance between mitral anulus and papillary muscles: Anatomic study in normal human hearts","volume":"118","author":"Sakai","year":"1999","journal-title":"J. Thorac. Cardiovasc. Surg."},{"key":"10.1016\/j.compbiomed.2022.105834_b41","series-title":"The Fourier Transform and Its Applications, chapter 4","article-title":"Notation for some useful functions","author":"Bracewell","year":"2000"},{"issue":"9","key":"10.1016\/j.compbiomed.2022.105834_b42","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0184729","article-title":"Fully-coupled fluid-structure interaction simulation of the aortic and mitral valves in a realistic 3D left ventricle model","volume":"12","author":"Mao","year":"2017","journal-title":"PLoS One"},{"year":"2017","series-title":"COMSOL Multiphysics Reference Manual","key":"10.1016\/j.compbiomed.2022.105834_b43"},{"issue":"21","key":"10.1016\/j.compbiomed.2022.105834_b44","doi-asserted-by":"crossref","DOI":"10.14814\/phy2.13392","article-title":"Organ-level validation of a cross-bridge cycling descriptor in a left ventricular finite element model: effects of ventricular loading on myocardial strains","volume":"5","author":"Shavik","year":"2017","journal-title":"Physiol. Rep."},{"issue":"119","key":"10.1016\/j.compbiomed.2022.105834_b45","doi-asserted-by":"crossref","first-page":"119","DOI":"10.3389\/fphys.2018.00119","article-title":"High spatial resolution multi-organ finite element modeling of ventricular-arterial coupling","volume":"9","author":"Shavik","year":"2018","journal-title":"Front. Physiol."},{"issue":"10","key":"10.1016\/j.compbiomed.2022.105834_b46","doi-asserted-by":"crossref","first-page":"1308","DOI":"10.1001\/jama.287.10.1308","article-title":"Hypertrophic cardiomyopathy: a systematic review","volume":"287","author":"Maron","year":"2002","journal-title":"JAMA"},{"key":"10.1016\/j.compbiomed.2022.105834_b47","series-title":"The Finite Element Method for Fluid Dynamics","first-page":"31","article-title":"Convection-dominated problems: Finite element approximations to the convection-diffusion-reaction equation","author":"Zienkiewicz","year":"2014"},{"issue":"4","key":"10.1016\/j.compbiomed.2022.105834_b48","doi-asserted-by":"crossref","DOI":"10.1371\/journal.pone.0154517","article-title":"Fluid-structure interaction simulation of prosthetic aortic valves: Comparison between immersed boundary and arbitrary Lagrangian-Eulerian techniques for the mesh representation","volume":"11","author":"Bavo","year":"2016","journal-title":"PLoS One"},{"issue":"10","key":"10.1016\/j.compbiomed.2022.105834_b49","doi-asserted-by":"crossref","first-page":"1171","DOI":"10.1114\/1.1616929","article-title":"Effects of a saddle shaped annulus on mitral valve function and chordal force distribution: An in vitro study","volume":"31","author":"Jimenez","year":"2003","journal-title":"Ann. Biomed. Eng."},{"issue":"1","key":"10.1016\/j.compbiomed.2022.105834_b50","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1007\/s10439-012-0620-6","article-title":"Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans","volume":"41","author":"Wang","year":"2013","journal-title":"Ann. Biomed. Eng."},{"issue":"4","key":"10.1016\/j.compbiomed.2022.105834_b51","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1016\/j.echo.2017.01.007","article-title":"Recommendations for noninvasive evaluation of native valvular regurgitation: A report from the American society of echocardiography developed in collaboration with the society for cardiovascular magnetic resonance","volume":"30","author":"Zoghbi","year":"2017","journal-title":"J. Am. Soc. Echocardiogr."},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105834_b52","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1115\/1.1894385","article-title":"In vitro dynamic strain behavior of the mitral valve posterior leaflet","volume":"127","author":"He","year":"2005","journal-title":"J. Biomech. Eng."},{"issue":"4","key":"10.1016\/j.compbiomed.2022.105834_b53","first-page":"488","article-title":"Effects of papillary muscle position on in-vitro dynamic strain on the porcine mitral valve","volume":"12","author":"He","year":"2003","journal-title":"J. Heart. Valve. Dis."},{"year":"2015","series-title":"Left Ventricular Pressure-Volume Analysis: An Example of Function Assessment on a Sheep","author":"Rodriguez","key":"10.1016\/j.compbiomed.2022.105834_b54"},{"issue":"6","key":"10.1016\/j.compbiomed.2022.105834_b55","doi-asserted-by":"crossref","DOI":"10.1002\/phy2.159","article-title":"Cardiac power integral: a new method for monitoring cardiovascular performance","volume":"1","author":"Rimehaug","year":"2013","journal-title":"Physiol. Rep."},{"issue":"6","key":"10.1016\/j.compbiomed.2022.105834_b56","first-page":"1066","article-title":"On the chordae structure and dynamic behaviour of the mitral valve","volume":"83","author":"Feng","year":"2018","journal-title":"IMA. J. Appl. Math."},{"issue":"6","key":"10.1016\/j.compbiomed.2022.105834_b57","doi-asserted-by":"crossref","first-page":"704","DOI":"10.1016\/j.jcin.2011.02.014","article-title":"Variability of left ventricular outflow tract gradient during cardiac catheterization in patients with hypertrophic cardiomyopathy","volume":"4","author":"Geske","year":"2011","journal-title":"JACC. Cardiovasc. Interv."},{"issue":"11","key":"10.1016\/j.compbiomed.2022.105834_b58","doi-asserted-by":"crossref","DOI":"10.1161\/JAHA.117.007353","article-title":"Use of cardiac computerized tomography to predict neo\u2013left ventricular outflow tract obstruction before transcatheter mitral valve replacement","volume":"6","author":"Murphy","year":"2017","journal-title":"J. Am. Heart. Assoc."},{"issue":"4","key":"10.1016\/j.compbiomed.2022.105834_b59","doi-asserted-by":"crossref","first-page":"335","DOI":"10.1016\/j.jcct.2019.11.016","article-title":"Predicting the outcome of transcatheter mitral valve implantation using image-based computational models","volume":"14","author":"Alharbi","year":"2020","journal-title":"J. Cardiovasc. Comput. Tomogr.","ISSN":"http:\/\/id.crossref.org\/issn\/1934-5925","issn-type":"print"},{"issue":"4","key":"10.1016\/j.compbiomed.2022.105834_b60","doi-asserted-by":"crossref","first-page":"482","DOI":"10.1016\/j.jcmg.2016.01.005","article-title":"Predicting LVOT obstruction in transcatheter mitral valve implantation: Concept of the Neo-LVOT","volume":"10","author":"Blanke","year":"2017","journal-title":"JACC Cardiovasc. Imaging."},{"issue":"2","key":"10.1016\/j.compbiomed.2022.105834_b61","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1002\/ccd.27447","article-title":"Validating a prediction modeling tool for left ventricular outflow tract (LVOT) obstruction after transcatheter mitral valve replacement (TMVR)","volume":"92","author":"Wang","year":"2018","journal-title":"Catheter. Cardiovasc. Interv."},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105834_b62","doi-asserted-by":"crossref","first-page":"503","DOI":"10.1007\/s10439-008-9627-4","article-title":"MRI-based CFD analysis of flow in a human left ventricle: methodology and application to a healthy heart","volume":"37","author":"Schenkel","year":"2009","journal-title":"Ann. Biomed. Eng."},{"key":"10.1016\/j.compbiomed.2022.105834_b63","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1016\/j.jcp.2012.08.036","article-title":"Fluid-structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle","volume":"244","author":"Le","year":"2013","journal-title":"J. Comput. Phys."},{"issue":"2","key":"10.1016\/j.compbiomed.2022.105834_b64","doi-asserted-by":"crossref","first-page":"474","DOI":"10.1016\/j.cmpb.2013.11.009","article-title":"Numerical simulation of patient-specific left ventricular model with both mitral and aortic valves by FSI approach","volume":"113","author":"Su","year":"2014","journal-title":"Comput. Methods. Programs. Biomed."},{"key":"10.1016\/j.compbiomed.2022.105834_b65","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1016\/j.euromechflu.2012.01.013","article-title":"On the three-dimensional vortical structure of early diastolic flow in a patient-specific left ventricle","volume":"35","author":"Le","year":"2012","journal-title":"Eur. J. Mech. B Fluids"},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105834_b66","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1016\/j.pathophys.2017.03.002","article-title":"An investigation on the effects of the angles between the mitral and aortic orifice during diastolic period using FSI","volume":"24","author":"Arefin","year":"2017","journal-title":"Pathophysiology"},{"issue":"4","key":"10.1016\/j.compbiomed.2022.105834_b67","doi-asserted-by":"crossref","first-page":"275","DOI":"10.1114\/1.1359452","article-title":"Computational flow modeling of the left ventricle based on in vivo MRI data: Initial experience","volume":"29","author":"Saber","year":"2001","journal-title":"Ann. Biomed. Eng."},{"issue":"6","key":"10.1016\/j.compbiomed.2022.105834_b68","doi-asserted-by":"crossref","first-page":"922","DOI":"10.1115\/1.1635404","article-title":"The influence of inflow boundary conditions on intra left ventricle flow predictions","volume":"125","author":"Long","year":"2003","journal-title":"J. Biomech. Eng."},{"key":"10.1016\/j.compbiomed.2022.105834_b69","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.compfluid.2014.01.030","article-title":"Image-based large-eddy simulation in a realistic left heart","volume":"94","author":"Chnafa","year":"2014","journal-title":"Comput. Fluids."},{"key":"10.1016\/j.compbiomed.2022.105834_b70","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1016\/j.jbiomech.2016.11.039","article-title":"Patient-specific CFD models for intraventricular flow analysis from 3D ultrasound imaging: Comparison of three clinical cases","volume":"50","author":"Bavo","year":"2017","journal-title":"J. Biomech."},{"issue":"21","key":"10.1016\/j.compbiomed.2022.105834_b71","doi-asserted-by":"crossref","first-page":"2627","DOI":"10.1093\/eurheartj\/ehm072","article-title":"Changes in systolic left ventricular function in isolated mitral regurgitation. A strain rate imaging study","volume":"28","author":"Baltabaeva","year":"2007","journal-title":"Eur. Heart. J."},{"issue":"22","key":"10.1016\/j.compbiomed.2022.105834_b72","doi-asserted-by":"crossref","first-page":"2298","DOI":"10.1161\/CIRCULATIONAHA.107.755942","article-title":"Left ventricular response to mitral regurgitation: implications for management","volume":"118","author":"Gaasch","year":"2008","journal-title":"Circulation"},{"issue":"4","key":"10.1016\/j.compbiomed.2022.105834_b73","doi-asserted-by":"crossref","first-page":"381","DOI":"10.1016\/j.jacc.2016.10.068","article-title":"Transcatheter mitral valve replacement for patients with symptomatic mitral regurgitation: A global feasibility trial","volume":"69","author":"Muller","year":"2017","journal-title":"J. Am. Coll. Cardiol."},{"issue":"2","key":"10.1016\/j.compbiomed.2022.105834_b74","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1007\/s13239-014-0201-y","article-title":"Asymptotic model of fluid-tissue interaction for mitral valve dynamics","volume":"6","author":"Domenichini","year":"2015","journal-title":"Cardiovasc. Eng. Technol."},{"issue":"6","key":"10.1016\/j.compbiomed.2022.105834_b75","doi-asserted-by":"crossref","first-page":"H2650","DOI":"10.1152\/ajpheart.00111.2002","article-title":"Shear properties of passive ventricular myocardium","volume":"283","author":"Dokos","year":"2002","journal-title":"Am. J. Physiol. Heart. Circ. Physiol."},{"key":"10.1016\/j.compbiomed.2022.105834_b76","doi-asserted-by":"crossref","first-page":"615","DOI":"10.1113\/jphysiol.1983.sp014738","article-title":"Passive biaxial mechanical properties of isolated canine myocardium","volume":"339","author":"Demer","year":"1983","journal-title":"J. Physiol."},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105834_b77","doi-asserted-by":"crossref","first-page":"2074","DOI":"10.1529\/biophysj.103.035840","article-title":"Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method","volume":"87","author":"Watanabe","year":"2004","journal-title":"Biophys. J."},{"issue":"1\u20132","key":"10.1016\/j.compbiomed.2022.105834_b78","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1007\/s10659-021-09829-5","article-title":"Influence of annular dynamics and material behavior in finite element analysis of Barlow\u2019s mitral valve disease","volume":"145","author":"Aguilera","year":"2021","journal-title":"J. Elasticity","ISSN":"http:\/\/id.crossref.org\/issn\/0374-3535","issn-type":"print"},{"issue":"2","key":"10.1016\/j.compbiomed.2022.105834_b79","doi-asserted-by":"crossref","first-page":"474","DOI":"10.1016\/S0735-1097(97)88335-0","article-title":"Assessment of mitral annulus velocity by Doppler tissue imaging in the evaluation of left ventricular diastolic function","volume":"30","author":"Sohn","year":"1997","journal-title":"J. Am. Coll. Cardiol."},{"issue":"6","key":"10.1016\/j.compbiomed.2022.105834_b80","doi-asserted-by":"crossref","first-page":"705","DOI":"10.1016\/j.jcmg.2008.06.008","article-title":"Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry","volume":"1","author":"Hong","year":"2008","journal-title":"JACC. Cardiovasc. Imaging."},{"issue":"6","key":"10.1016\/j.compbiomed.2022.105834_b81","doi-asserted-by":"crossref","first-page":"592","DOI":"10.1177\/1081286513485779","article-title":"Influence of myocardial fiber\/sheet orientations on left ventricular mechanical contraction","volume":"18","author":"Eriksson","year":"2013","journal-title":"Math. Mech. Solids."},{"issue":"8","key":"10.1016\/j.compbiomed.2022.105834_b82","doi-asserted-by":"crossref","first-page":"743","DOI":"10.1002\/fld.348","article-title":"A differential equation for approximate wall distance","volume":"39","author":"Fares","year":"2002","journal-title":"Internat. J. Numer. Methods Fluids"},{"issue":"20","key":"10.1016\/j.compbiomed.2022.105834_b83","doi-asserted-by":"crossref","first-page":"7571","DOI":"10.1016\/j.jcp.2010.05.043","article-title":"A non-conforming monolithic finite element method for problems of coupled mechanics","volume":"229","author":"Nordsletten","year":"2010","journal-title":"J. Comput. Phys."}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S001048252200590X?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S001048252200590X?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,12,22]],"date-time":"2022-12-22T18:47:48Z","timestamp":1671734868000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S001048252200590X"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,9]]},"references-count":83,"alternative-id":["S001048252200590X"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2022.105834","relation":{},"ISSN":["0010-4825"],"issn-type":[{"type":"print","value":"0010-4825"}],"subject":[],"published":{"date-parts":[[2022,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"Fluid structure computational model of simulating mitral valve motion in a contracting left ventricle","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2022.105834","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105834"}}