{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T19:07:51Z","timestamp":1735585671461},"reference-count":79,"publisher":"Elsevier BV","license":[{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.elsevier.com\/tdm\/userlicense\/1.0\/"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-017"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-037"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-012"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-029"},{"start":{"date-parts":[[2022,9,1]],"date-time":"2022-09-01T00:00:00Z","timestamp":1661990400000},"content-version":"stm-asf","delay-in-days":0,"URL":"https:\/\/doi.org\/10.15223\/policy-004"}],"content-domain":{"domain":["clinicalkey.fr","clinicalkey.jp","clinicalkey.com.au","clinicalkey.es","clinicalkey.com","elsevier.com","sciencedirect.com"],"crossmark-restriction":true},"short-container-title":["Computers in Biology and Medicine"],"published-print":{"date-parts":[[2022,9]]},"DOI":"10.1016\/j.compbiomed.2022.105820","type":"journal-article","created":{"date-parts":[[2022,7,14]],"date-time":"2022-07-14T06:04:18Z","timestamp":1657778658000},"page":"105820","update-policy":"http:\/\/dx.doi.org\/10.1016\/elsevier_cm_policy","source":"Crossref","is-referenced-by-count":10,"special_numbering":"C","title":["An ensemble framework for microarray data classification based on feature subspace partitioning"],"prefix":"10.1016","volume":"148","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3982-0589","authenticated-orcid":false,"given":"Vahid","family":"Nosrati","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6890-192X","authenticated-orcid":false,"given":"Mohsen","family":"Rahmani","sequence":"additional","affiliation":[]}],"member":"78","reference":[{"key":"10.1016\/j.compbiomed.2022.105820_b1","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2019.113169","article-title":"Informative top-k class associative rule for cancer biomarker discovery on microarray data","volume":"146","author":"Ong","year":"2020","journal-title":"Expert Syst. Appl."},{"issue":"4","key":"10.1016\/j.compbiomed.2022.105820_b2","doi-asserted-by":"crossref","first-page":"1080","DOI":"10.1109\/TCBB.2010.103","article-title":"Robust feature selection for microarray data based on multicriterion fusion","volume":"8","author":"Yang","year":"2010","journal-title":"IEEE\/ACM Trans. Comput. Biol. Bioinform."},{"issue":"1","key":"10.1016\/j.compbiomed.2022.105820_b3","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1007\/s00521-010-0371-y","article-title":"Adaptive huberized support vector machine and its application to microarray classification","volume":"20","author":"Li","year":"2011","journal-title":"Neural. Comput. Appl."},{"key":"10.1016\/j.compbiomed.2022.105820_b4","series-title":"Microarray Bioinformatics","first-page":"123","article-title":"Feature selection applied to microarray data","author":"Alonso-Betanzos","year":"2019"},{"key":"10.1016\/j.compbiomed.2022.105820_b5","first-page":"1205","article-title":"Efficient feature selection via analysis of relevance and redundancy","volume":"5","author":"Yu","year":"2004","journal-title":"J. Mach. Learn. Res."},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105820_b6","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1016\/j.cviu.2012.11.007","article-title":"Information-theoretic selection of high-dimensional spectral features for structural recognition","volume":"117","author":"Bonev","year":"2013","journal-title":"Comput. Vis. Image Underst."},{"issue":"Mar","key":"10.1016\/j.compbiomed.2022.105820_b7","first-page":"1157","article-title":"An introduction to variable and feature selection","volume":"3","author":"Guyon","year":"2003","journal-title":"J. Mach. Learn. Res."},{"key":"10.1016\/j.compbiomed.2022.105820_b8","series-title":"2007 10th International Conference on Information Fusion","first-page":"1","article-title":"Fusion in multi-criterion feature ranking","author":"Yan","year":"2007"},{"issue":"10","key":"10.1016\/j.compbiomed.2022.105820_b9","doi-asserted-by":"crossref","first-page":"2394","DOI":"10.1093\/bioinformatics\/bti319","article-title":"BayesIan model averaging: development of an improved multi-class, gene selection and classification tool for microarray data","volume":"21","author":"Yeung","year":"2005","journal-title":"Bioinformatics"},{"key":"10.1016\/j.compbiomed.2022.105820_b10","doi-asserted-by":"crossref","DOI":"10.1016\/j.knosys.2020.106097","article-title":"Ensemble feature selection in high dimension, low sample size datasets: Parallel and serial combination approaches","volume":"203","author":"Tsai","year":"2020","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.compbiomed.2022.105820_b11","doi-asserted-by":"crossref","first-page":"365","DOI":"10.1016\/j.ins.2018.12.033","article-title":"Ensemble feature selection using election methods and ranker clustering","volume":"480","author":"Drot\u00e1r","year":"2019","journal-title":"Inform. Sci."},{"key":"10.1016\/j.compbiomed.2022.105820_b12","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1016\/j.eswa.2018.12.022","article-title":"A nested genetic algorithm for feature selection in high-dimensional cancer microarray datasets","volume":"121","author":"Sayed","year":"2019","journal-title":"Expert Syst. Appl."},{"key":"10.1016\/j.compbiomed.2022.105820_b13","doi-asserted-by":"crossref","first-page":"124","DOI":"10.1016\/j.knosys.2016.11.017","article-title":"Ensemble feature selection: homogeneous and heterogeneous approaches","volume":"118","author":"Seijo-Pardo","year":"2017","journal-title":"Knowl. Based Syst."},{"key":"10.1016\/j.compbiomed.2022.105820_b14","series-title":"Joint European Conference on Machine Learning and Knowledge Discovery in Databases","first-page":"313","article-title":"Robust feature selection using ensemble feature selection techniques","author":"Saeys","year":"2008"},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105820_b15","doi-asserted-by":"crossref","first-page":"392","DOI":"10.1093\/bioinformatics\/btp630","article-title":"Robust biomarker identification for cancer diagnosis with ensemble feature selection methods","volume":"26","author":"Abeel","year":"2010","journal-title":"Bioinformatics"},{"issue":"10","key":"10.1016\/j.compbiomed.2022.105820_b16","doi-asserted-by":"crossref","first-page":"5951","DOI":"10.1007\/s00521-019-04082-3","article-title":"Ensemble feature selection for high-dimensional data: a stability analysis across multiple domains","volume":"32","author":"Pes","year":"2020","journal-title":"Neural. Comput. Appl."},{"issue":"2","key":"10.1016\/j.compbiomed.2022.105820_b17","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1007\/s12065-013-0093-z","article-title":"Performance analysis of rough set ensemble of learning classifier systems with differential evolution based rule discovery","volume":"6","author":"Debie","year":"2013","journal-title":"Evol. Intell."},{"key":"10.1016\/j.compbiomed.2022.105820_b18","series-title":"2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society","first-page":"4675","article-title":"Random feature subspace ensemble based extreme learning machine for liver tumor detection and segmentation","author":"Huang","year":"2014"},{"key":"10.1016\/j.compbiomed.2022.105820_b19","doi-asserted-by":"crossref","DOI":"10.1155\/2015\/590678","article-title":"A new ensemble method with feature space partitioning for high-dimensional data classification","volume":"2015","author":"Piao","year":"2015","journal-title":"Math. Probl. Eng."},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105820_b20","doi-asserted-by":"crossref","first-page":"769","DOI":"10.1016\/j.patcog.2012.09.005","article-title":"Stratified sampling for feature subspace selection in random forests for high dimensional data","volume":"46","author":"Ye","year":"2013","journal-title":"Pattern Recognit."},{"key":"10.1016\/j.compbiomed.2022.105820_b21","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1016\/j.ins.2022.01.074","article-title":"Subspace-based decision trees integration","volume":"592","author":"Burduk","year":"2022","journal-title":"Inform. Sci."},{"issue":"1","key":"10.1016\/j.compbiomed.2022.105820_b22","doi-asserted-by":"crossref","first-page":"389","DOI":"10.1023\/A:1012487302797","article-title":"Gene selection for cancer classification using support vector machines","volume":"46","author":"Guyon","year":"2002","journal-title":"Mach. Learn."},{"issue":"8","key":"10.1016\/j.compbiomed.2022.105820_b23","doi-asserted-by":"crossref","first-page":"1226","DOI":"10.1109\/TPAMI.2005.159","article-title":"Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy","volume":"27","author":"Peng","year":"2005","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"issue":"1","key":"10.1016\/j.compbiomed.2022.105820_b24","doi-asserted-by":"crossref","first-page":"612","DOI":"10.1016\/j.eswa.2014.08.014","article-title":"Gene selection from microarray gene expression data for classification of cancer subgroups employing PSO and adaptive K-nearest neighborhood technique","volume":"42","author":"Kar","year":"2015","journal-title":"Expert Syst. Appl."},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105820_b25","doi-asserted-by":"crossref","first-page":"bbaa105","DOI":"10.1093\/bib\/bbaa105","article-title":"Metafs: performance assessment of biomarker discovery in metaproteomics","volume":"22","author":"Tang","year":"2021","journal-title":"Brief. Bioinform."},{"issue":"4","key":"10.1016\/j.compbiomed.2022.105820_b26","doi-asserted-by":"crossref","first-page":"1378","DOI":"10.1093\/bib\/bbz061","article-title":"A critical assessment of the feature selection methods used for biomarker discovery in current metaproteomics studies","volume":"21","author":"Tang","year":"2020","journal-title":"Brief. Bioinform."},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105820_b27","doi-asserted-by":"crossref","first-page":"413","DOI":"10.1007\/s13042-012-0139-z","article-title":"A filter-dominating hybrid sequential forward floating search method for feature subset selection in high-dimensional space","volume":"5","author":"Gan","year":"2014","journal-title":"Int. J. Mach. Learn. Cybern."},{"key":"10.1016\/j.compbiomed.2022.105820_b28","doi-asserted-by":"crossref","first-page":"362","DOI":"10.1016\/j.ins.2014.09.064","article-title":"Mapping microarray gene expression data into dissimilarity spaces for tumor classification","volume":"294","author":"Garc\u00eda","year":"2015","journal-title":"Inform. Sci."},{"issue":"1","key":"10.1016\/j.compbiomed.2022.105820_b29","first-page":"25","article-title":"Gene selection by sequential search wrapper approaches in microarray cancer class prediction","volume":"12","author":"Inza","year":"2002","journal-title":"J. Intell. Fuzzy Syst."},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105820_b30","first-page":"754","article-title":"A top-r feature selection algorithm for microarray gene expression data","volume":"9","author":"Sharma","year":"2011","journal-title":"IEEE\/ACM Trans. Comput. Biol. Bioinform."},{"issue":"1","key":"10.1016\/j.compbiomed.2022.105820_b31","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1016\/j.patcog.2012.07.028","article-title":"Selecting feature subset for high dimensional data via the propositional FOIL rules","volume":"46","author":"Wang","year":"2013","journal-title":"Pattern Recognit."},{"issue":"05","key":"10.1016\/j.compbiomed.2022.105820_b32","doi-asserted-by":"crossref","DOI":"10.1142\/S0218001412600038","article-title":"Iterative feature perturbation as a gene selector for microarray data","volume":"26","author":"Canul-Reich","year":"2012","journal-title":"Int. J. Pattern Recognit. Artif. Intell."},{"key":"10.1016\/j.compbiomed.2022.105820_b33","doi-asserted-by":"crossref","first-page":"922","DOI":"10.1016\/j.asoc.2015.10.037","article-title":"Two hybrid wrapper-filter feature selection algorithms applied to high-dimensional microarray experiments","volume":"38","author":"Apolloni","year":"2016","journal-title":"Appl. Soft Comput."},{"key":"10.1016\/j.compbiomed.2022.105820_b34","doi-asserted-by":"crossref","first-page":"78533","DOI":"10.1109\/ACCESS.2019.2922987","article-title":"A survey on hybrid feature selection methods in microarray gene expression data for cancer classification","volume":"7","author":"Almugren","year":"2019","journal-title":"IEEE Access"},{"issue":"5","key":"10.1016\/j.compbiomed.2022.105820_b35","doi-asserted-by":"crossref","first-page":"bbab138","DOI":"10.1093\/bib\/bbab138","article-title":"Pharmacometabonomics: data processing and statistical analysis","volume":"22","author":"Fu","year":"2021","journal-title":"Brief. Bioinform."},{"issue":"1","key":"10.1016\/j.compbiomed.2022.105820_b36","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1038\/s41596-021-00636-9","article-title":"Optimization of metabolomic data processing using NOREVA","volume":"17","author":"Fu","year":"2022","journal-title":"Nat. Protoc."},{"issue":"2","key":"10.1016\/j.compbiomed.2022.105820_b37","doi-asserted-by":"crossref","first-page":"621","DOI":"10.1093\/bib\/bby127","article-title":"ANPELA: analysis and performance assessment of the label-free quantification workflow for metaproteomic studies","volume":"21","author":"Tang","year":"2020","journal-title":"Brief. Bioinform."},{"issue":"W1","key":"10.1016\/j.compbiomed.2022.105820_b38","doi-asserted-by":"crossref","first-page":"W436","DOI":"10.1093\/nar\/gkaa258","article-title":"NOREVA: enhanced normalization and evaluation of time-course and multi-class metabolomic data","volume":"48","author":"Yang","year":"2020","journal-title":"Nucl. Acids Res."},{"issue":"11","key":"10.1016\/j.compbiomed.2022.105820_b39","doi-asserted-by":"crossref","first-page":"3411","DOI":"10.1016\/j.jmb.2020.01.027","article-title":"SSizer: determining the sample sufficiency for comparative biological study","volume":"432","author":"Li","year":"2020","journal-title":"J. Mol. Biol."},{"issue":"W1","key":"10.1016\/j.compbiomed.2022.105820_b40","doi-asserted-by":"crossref","first-page":"W162","DOI":"10.1093\/nar\/gkx449","article-title":"NOREVA: normalization and evaluation of MS-based metabolomics data","volume":"45","author":"Li","year":"2017","journal-title":"Nucl. Acids Res."},{"issue":"8","key":"10.1016\/j.compbiomed.2022.105820_b41","doi-asserted-by":"crossref","first-page":"1683","DOI":"10.1074\/mcp.RA118.001169","article-title":"Simultaneous improvement in the precision, accuracy, and robustness of label-free proteome quantification by optimizing data manipulation chains*[S]","volume":"18","author":"Tang","year":"2019","journal-title":"Mol. Cell Proteomics"},{"key":"10.1016\/j.compbiomed.2022.105820_b42","doi-asserted-by":"crossref","first-page":"681","DOI":"10.3389\/fphar.2018.00681","article-title":"Discovery of the consistently well-performed analysis chain for SWATH-MS based pharmacoproteomic quantification","volume":"9","author":"Fu","year":"2018","journal-title":"Front. Pharmacol."},{"key":"10.1016\/j.compbiomed.2022.105820_b43","doi-asserted-by":"crossref","DOI":"10.1016\/j.jprot.2020.104023","article-title":"MMEASE: online meta-analysis of metabolomic data by enhanced metabolite annotation, marker selection and enrichment analysis","volume":"232","author":"Yang","year":"2021","journal-title":"J. Proteomics"},{"issue":"16","key":"10.1016\/j.compbiomed.2022.105820_b44","first-page":"20","article-title":"Data preprocessing and reducing for microarray data exploration and analysis","volume":"132","author":"Rafii","year":"2015","journal-title":"Int. J. Comput. Appl."},{"key":"10.1016\/j.compbiomed.2022.105820_b45","first-page":"78","article-title":"Microarray cancer feature selection: review, challenges and research directions","volume":"1","author":"Hambali","year":"2020","journal-title":"Int. J. Cogn. Comput. Eng."},{"key":"10.1016\/j.compbiomed.2022.105820_b46","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1016\/j.neucom.2018.09.084","article-title":"Partial maximum correlation information: A new feature selection method for microarray data classification","volume":"323","author":"Yuan","year":"2019","journal-title":"Neurocomputing"},{"key":"10.1016\/j.compbiomed.2022.105820_b47","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1016\/j.gdata.2016.02.012","article-title":"A fuzzy based feature selection from independent component subspace for machine learning classification of microarray data","volume":"8","author":"Aziz","year":"2016","journal-title":"Genom. Data"},{"issue":"6","key":"10.1016\/j.compbiomed.2022.105820_b48","doi-asserted-by":"crossref","first-page":"1004","DOI":"10.1109\/TCBB.2016.2515582","article-title":"A new approach for feature selection from microarray data based on mutual information","volume":"13","author":"Tang","year":"2016","journal-title":"IEEE\/ACM Trans. Comput. Biol. Bioinform."},{"key":"10.1016\/j.compbiomed.2022.105820_b49","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.procs.2015.04.060","article-title":"Feature selection of gene expression data for cancer classification: a review","volume":"50","author":"Singh","year":"2015","journal-title":"Procedia Comput. Sci."},{"key":"10.1016\/j.compbiomed.2022.105820_b50","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.inffus.2018.11.008","article-title":"Ensembles for feature selection: A review and future trends","volume":"52","author":"Bol\u00f3n-Canedo","year":"2019","journal-title":"Inf. Fusion"},{"key":"10.1016\/j.compbiomed.2022.105820_b51","doi-asserted-by":"crossref","DOI":"10.1016\/j.artmed.2020.101941","article-title":"G-forest: An ensemble method for cost-sensitive feature selection in gene expression microarrays","volume":"108","author":"Abdulla","year":"2020","journal-title":"Artif. Intell. Med."},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105820_b52","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1504\/IJBRA.2020.109100","article-title":"Usage of ensemble model and genetic algorithm in pipeline for feature selection from cancer microarray data","volume":"16","author":"Barnali","year":"2020","journal-title":"Int. J. Bioinform. Res. Appl."},{"key":"10.1016\/j.compbiomed.2022.105820_b53","doi-asserted-by":"crossref","DOI":"10.1016\/j.jbi.2019.103213","article-title":"A novel feature selection method for microarray data classification based on hidden Markov model","volume":"95","author":"Momenzadeh","year":"2019","journal-title":"J. Biomed. Inform."},{"issue":"11","key":"10.1016\/j.compbiomed.2022.105820_b54","doi-asserted-by":"crossref","first-page":"1301","DOI":"10.1007\/s13258-019-00859-x","article-title":"Improving classification accuracy of cancer types using parallel hybrid feature selection on microarray gene expression data","volume":"41","author":"Venkataramana","year":"2019","journal-title":"Genes Genom."},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105820_b55","doi-asserted-by":"crossref","first-page":"791","DOI":"10.1039\/C4MB00659C","article-title":"Classification of lung cancer using ensemble-based feature selection and machine learning methods","volume":"11","author":"Cai","year":"2015","journal-title":"Mol. Biosyst."},{"key":"10.1016\/j.compbiomed.2022.105820_b56","doi-asserted-by":"crossref","DOI":"10.1016\/j.compbiomed.2021.105208","article-title":"Ensemble feature selection for stable biomarker identification and cancer classification from microarray expression data","volume":"142","author":"Wang","year":"2022","journal-title":"Comput. Biol. Med."},{"issue":"4","key":"10.1016\/j.compbiomed.2022.105820_b57","first-page":"50","article-title":"Building an ensemble feature selection approach for cancer microarray datasets using different classifiers","volume":"12","author":"Sayed","year":"2019","journal-title":"Int. J. Intell. Eng. Syst."},{"issue":"4","key":"10.1016\/j.compbiomed.2022.105820_b58","doi-asserted-by":"crossref","first-page":"937","DOI":"10.1007\/s11634-017-0285-y","article-title":"Ensemble feature selection for high dimensional data: a new method and a comparative study","volume":"12","author":"Ben Brahim","year":"2018","journal-title":"Adv. Data Anal. Classif."},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105820_b59","doi-asserted-by":"crossref","first-page":"1058","DOI":"10.1093\/bib\/bbz049","article-title":"Consistent gene signature of schizophrenia identified by a novel feature selection strategy from comprehensive sets of transcriptomic data","volume":"21","author":"Yang","year":"2020","journal-title":"Brief. Bioinform."},{"issue":"6","key":"10.1016\/j.compbiomed.2022.105820_b60","doi-asserted-by":"crossref","first-page":"1505","DOI":"10.1007\/s11280-017-0523-4","article-title":"A novel relevance feedback method for CBIR","volume":"21","author":"Rao","year":"2018","journal-title":"World Wide Web"},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105820_b61","doi-asserted-by":"crossref","first-page":"554","DOI":"10.1111\/coin.12099","article-title":"On taxonomy and evaluation of feature selection-based learning classifier system ensemble approaches for data mining problems","volume":"33","author":"Debie","year":"2017","journal-title":"Comput. Intell."},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105820_b62","doi-asserted-by":"crossref","first-page":"521","DOI":"10.1016\/j.bbe.2016.05.001","article-title":"A novel feature extraction approach based on ensemble feature selection and modified discriminant independent component analysis for microarray data classification","volume":"36","author":"Mollaee","year":"2016","journal-title":"Biocybern. Biomed. Eng."},{"key":"10.1016\/j.compbiomed.2022.105820_b63","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1016\/j.inffus.2018.02.007","article-title":"On developing an automatic threshold applied to feature selection ensembles","volume":"45","author":"Seijo-Pardo","year":"2019","journal-title":"Inf. Fusion"},{"issue":"4","key":"10.1016\/j.compbiomed.2022.105820_b64","doi-asserted-by":"crossref","first-page":"449","DOI":"10.1007\/s13258-020-00916-w","article-title":"Detecting biomarkers from microarray data using distributed correlation based gene selection","volume":"42","author":"Shukla","year":"2020","journal-title":"Genes Genom."},{"key":"10.1016\/j.compbiomed.2022.105820_b65","series-title":"European Conference on Machine Learning","first-page":"171","article-title":"Estimating attributes: Analysis and extensions of RELIEF","author":"Kononenko","year":"1994"},{"key":"10.1016\/j.compbiomed.2022.105820_b66","unstructured":"K. Kira, L.A. Rendell, et al., The feature selection problem: Traditional methods and a new algorithm, in: Aaai, Vol. 2, 1992, pp. 129\u2013134."},{"key":"10.1016\/j.compbiomed.2022.105820_b67","series-title":"ICML, Vol. 98","first-page":"82","article-title":"Feature selection via concave minimization and support vector machines","author":"Bradley","year":"1998"},{"key":"10.1016\/j.compbiomed.2022.105820_b68","article-title":"Stability of feature selection algorithm: A review","author":"Khaire","year":"2019","journal-title":"J. King Saud Univ. - Comput. Inf. Sci."},{"key":"10.1016\/j.compbiomed.2022.105820_b69","series-title":"Artificial Intelligence and Applications","first-page":"421","article-title":"A stability index for feature selection","author":"Kuncheva","year":"2007"},{"issue":"3","key":"10.1016\/j.compbiomed.2022.105820_b70","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Mach. Learn."},{"issue":"19","key":"10.1016\/j.compbiomed.2022.105820_b71","doi-asserted-by":"crossref","first-page":"2356","DOI":"10.1093\/bioinformatics\/btl400","article-title":"Reliable gene signatures for microarray classification: assessment of stability and performance","volume":"22","author":"Davis","year":"2006","journal-title":"Bioinformatics"},{"issue":"12","key":"10.1016\/j.compbiomed.2022.105820_b72","doi-asserted-by":"crossref","first-page":"6745","DOI":"10.1073\/pnas.96.12.6745","article-title":"Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays","volume":"96","author":"Alon","year":"1999","journal-title":"Proc. Natl. Acad. Sci. USA"},{"issue":"6769","key":"10.1016\/j.compbiomed.2022.105820_b73","doi-asserted-by":"crossref","first-page":"503","DOI":"10.1038\/35000501","article-title":"Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling","volume":"403","author":"Alizadeh","year":"2000","journal-title":"Nature"},{"issue":"7","key":"10.1016\/j.compbiomed.2022.105820_b74","doi-asserted-by":"crossref","first-page":"646","DOI":"10.1016\/j.compbiomed.2009.04.008","article-title":"Simultaneous genes and training samples selection by modified particle swarm optimization for gene expression data classification","volume":"39","author":"Shen","year":"2009","journal-title":"Comput. Biol. Med."},{"issue":"5439","key":"10.1016\/j.compbiomed.2022.105820_b75","doi-asserted-by":"crossref","first-page":"531","DOI":"10.1126\/science.286.5439.531","article-title":"Molecular classification of cancer: class discovery and class prediction by gene expression monitoring","volume":"286","author":"Golub","year":"1999","journal-title":"Science"},{"issue":"1","key":"10.1016\/j.compbiomed.2022.105820_b76","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1038\/ng765","article-title":"MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia","volume":"30","author":"Armstrong","year":"2002","journal-title":"Nat. Genet."},{"issue":"24","key":"10.1016\/j.compbiomed.2022.105820_b77","doi-asserted-by":"crossref","first-page":"13790","DOI":"10.1073\/pnas.191502998","article-title":"Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses","volume":"98","author":"Bhattacharjee","year":"2001","journal-title":"Proc. Natl. Acad. Sci."},{"issue":"9306","key":"10.1016\/j.compbiomed.2022.105820_b78","doi-asserted-by":"crossref","first-page":"572","DOI":"10.1016\/S0140-6736(02)07746-2","article-title":"Use of proteomic patterns in serum to identify ovarian cancer","volume":"359","author":"Petricoin","year":"2002","journal-title":"Lancet"},{"key":"10.1016\/j.compbiomed.2022.105820_b79","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1016\/j.asoc.2015.01.035","article-title":"Distributed feature selection: An application to microarray data classification","volume":"30","author":"Bol\u00f3n-Canedo","year":"2015","journal-title":"Appl. Soft Comput."}],"container-title":["Computers in Biology and Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482522005819?httpAccept=text\/xml","content-type":"text\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/api.elsevier.com\/content\/article\/PII:S0010482522005819?httpAccept=text\/plain","content-type":"text\/plain","content-version":"vor","intended-application":"text-mining"}],"deposited":{"date-parts":[[2022,12,22]],"date-time":"2022-12-22T18:46:57Z","timestamp":1671734817000},"score":1,"resource":{"primary":{"URL":"https:\/\/linkinghub.elsevier.com\/retrieve\/pii\/S0010482522005819"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,9]]},"references-count":79,"alternative-id":["S0010482522005819"],"URL":"https:\/\/doi.org\/10.1016\/j.compbiomed.2022.105820","relation":{},"ISSN":["0010-4825"],"issn-type":[{"value":"0010-4825","type":"print"}],"subject":[],"published":{"date-parts":[[2022,9]]},"assertion":[{"value":"Elsevier","name":"publisher","label":"This article is maintained by"},{"value":"An ensemble framework for microarray data classification based on feature subspace partitioning","name":"articletitle","label":"Article Title"},{"value":"Computers in Biology and Medicine","name":"journaltitle","label":"Journal Title"},{"value":"https:\/\/doi.org\/10.1016\/j.compbiomed.2022.105820","name":"articlelink","label":"CrossRef DOI link to publisher maintained version"},{"value":"article","name":"content_type","label":"Content Type"},{"value":"\u00a9 2022 Elsevier Ltd. All rights reserved.","name":"copyright","label":"Copyright"}],"article-number":"105820"}}